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An empathetic car that is capable of reading the driver’s emotions has been envisioned by many car manufacturers. Emotion
inference enables in-vehicle applications to improve driver comfort, well-being, and safety. Available emotion inference
approaches use physiological, facial, and speech-related data to infer emotions during driving trips. However, existing solutions
have two major limitations: Relying on sensors that are not built into the vehicle restricts emotion inference to those people
leveraging corresponding devices (e.g., smartwatches). Relying on modalities such as facial expressions and speech raises
privacy concerns. By contrast, researchers in mobile health have been able to infer affective states (e.g., emotions) based on
behavioural and contextual patterns decoded in available sensor streams, e.g., obtained by smartphones. We transfer this
rationale to an in-vehicle setting by analysing the feasibility of inferring driver emotions by passively interpreting the data
streams of the control area network (CAN-bus) and the traffic context (inferred from the front-view camera). Therefore, our
approach does not rely on particularly privacy-sensitive data streams such as the driver facial video or driver speech, but is
built based on existing CAN-bus data and traffic information, which is available in current high-end or future vehicles. To
assess our approach, we conducted a four-month field study on public roads covering a variety of uncontrolled daily driving
activities. Hence, our results were generated beyond the confines of a laboratory environment. Ultimately, our proposed
approach can accurately recognise drivers’ emotions and achieve comparable performance as the medical-grade physiological
sensor-based state-of-the-art baseline method.
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1 INTRODUCTION
The aim of affective computing is to recognise and adapt to the affective state of the user. Examples of its implica-
tions include reducing the user’s frustration through adaptive and comfortable communication or delivering
just-in-time interventions [66]. Driving is often a source of stress, and is associated with cognitive burden [74].
Traffic, driving task, and navigation systems, etc., frequently constitute triggers of negative emotions during
driving [9, 36, 87] and hence lead to a sub-optimal mental status while driving than other daily tasks [9, 29].
The accumulated cognitive load and negative emotions do not only have negative consequences for the drivers’
physiological well-being [74], but can also cause the immediate impairments of driving performance. For instance,
anger and sadness are found to be associated with risky and degraded driving performance [8, 80] and a positive
valence is found to be correlated with better steering behaviours [78]. It is of vital importance to detect negative
or stress-related emotions, such as anger, disgust, fear, and sadness, as well as positive emotions such as joy and
valence. In the environment of a car, technologies that can infer the driver’s emotions can help improve their
comfort, well-being, and safety. Thus, detecting the driver’s emotional state is an important part of the vision
for the car of the future. In pursuit of this vision, OEMs (e.g., BMW, KIA and Mercedes–Benz [11, 32, 49]) and
start-up companies (e.g., Affectiva [48]) have already taken initial steps.
However, past research on in-vehicle emotion recognition has yielded two major limitations that hinder the

large-scale integration of this technology into the car [4]. First, available solutions such as the ENERGIZING
COACH, introduced by Mercedes–Benz [11], rely on smartwatches that incur additional cost, and hence are
still not extensively used. Hence, such approaches are limited in their scalability. Second, existing work has
focused on emotion recognition via facial expressions or speech, which particularly compromises drivers’ privacy
[88]. This substantially differs from the approach considered here because we rely on the control area network
(CAN-bus) and front-view camera data. The CAN-bus is a standard for communication among in-vehicle sensors,
controllers, and actuators, and contains detailed information about driving behaviours such as steering, braking,
and accelerating. Front-view cameras can easily be mounted on vehicles to record videos that capture the ambient
traffic environment, and are already built into the latest generation of cars. Hence, approaches based on CAN-bus
and front-view camera can be applied to existing vehicles without requiring expensive, special-purpose hardware.
Our approach draws on an analogy between recent advancements in generic emotion recognition via user

behaviour and the contexts of application to enable in-vehicle emotion inference. Many studies have shown the
feasibility of inferring a users’ emotions from the patterns of his/her smartphone usage [37, 42, 89]. Emotion-
induced behavioural patterns are highly correlated with context (e.g., dining, working, and entertainment), which
can improve the accuracy of emotion recognition [23, 50]. Because driving is a unique activity with predefined
rules and interactions that differ from what has been investigated in previous studies [37, 42, 89], we apply the
concept of re-purposing the available sensor modalities to develop inference models targeting behavioural and
context-based emotion recognition. In summary, the novelty of our approach is in applying machine learning
to CAN-bus and front-view video data streams to reliably detect the emotions of drivers while minimising
privacy-related concerns. Our approach is formalised within the following two research questions (RQ):

• RQ1: To what extent can the emotions of drivers be inferred based on (a) CAN-bus data streams, (b) the
front-view camera, and (c) a combination of both (fusion)?

• RQ2: How much improvement does emotion recognition based on vehicle data offer compared with state-of-the-
art methods based on physiological sensors?
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In successfully answering these research questions, the main contributions and results of this study can be
summarised as follows:

• We conducted a four-month field study involving nine participants to collect various (CAN-bus, front-view
camera, driver facial camera and physiological sensors) empirical sensory data during uncontrolled daily
driving activities on public roads. In total, we collected valid data on 675.6 hours driving data made by nine
participants covering various scenarios.

• Recording CAN-bus and video data requires pre-processing in order to use them in machine learning
pipelines. We outline a comprehensive pre-processing and feature engineering pipeline for both kinds of
data. We comprehensively summarise important features for time-series and video data as the basis of the
classification algorithms.

• We develop an emotion classification algorithm that can process and classify CAN-bus and video data
streams as well as fuse them. Based on either kind of CAN-bus or video data, our algorithm can detect the
emotions1 based on facial expressions with an average macro F1-score of around 70% in user-dependent
settings, and around 60% in user-independent settings. The results of our experiments showed that the
fusion of the two modalities can further improve the performance.

• While the methods based on physiological sensors are the most prevalent among in-vehicle emotion
recognition, there is a clear trend towards more ubiquitous affective state monitoring methods [88]. We
demonstrate that our proposed method can accurately recognise drivers’ emotions and achieve comparable
performance as the medical-grade physiological sensor-based state-of-the-art baseline method [52]. Our
solution is more ubiquitous, and uses only sensors available in modern cars.

• To the best of our knowledge, this is the first study that verifies the feasibility of non-intrusive inference of
driver emotions in empirical situations based on driving behaviours and traffic contexts. Based on 675 hours
of driving data collected on public roads in real driving scenarios, a challenging environment compared
with laboratory conditions, our results are likely to be more reliable.

The remainder of this paper is organised as follows: We review related work in Section 2, and present our field
study in Section 3. We introduce our methods for emotion recognition in Section 4. Section 5 summarises the
results of verification of our method, and we discuss them further in Section 6. Finally, Section 7 provides the
conclusions of our study.

2 RELATED WORK
In this section, we outline common standards of emotion measurement, the current trends in emotion recognition,
and the progress in research on in-vehicle emotion recognition for drivers.

2.1 Emotions
To recognise the emotional state of drivers, it is important to obtain a reliable ground truth of emotions that
can be used to train and evaluate models. The affective computing community often uses several expressions
interchangeably to describe emotions [6], and there is no consensus on a general classification, even in the field
of psychology [27]. The challenge is that the emotional spectrum ranges around different origins: short and
raw (affect), directed and intensely felt (emotions), or long and diffuse (moods) [3, 69]. Researchers commonly
summarise these differences in origins as experiences of feeling basic emotional states [69], and various models
have been proposed to reliably measure these emotional states in a standardised way.

The common methods of measurement are discrete category models and two- (2D) or three-dimensional (3D)
models [6]. Discrete category models (e.g., [18]) allow subjects to categorise their emotional states into a set of
basic emotions, such as happiness, sadness, anger, surprise, fear, and disgust. By contrast, 2D and 3D models

1In this work, we focused on: anger, disgust, fear, joy, neutral, sadness, surprise, and valence.
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measure emotions in a multidimensional space [6]. An example is Russel’s circumplex model, in which subjects
can rate their levels of arousal (i.e., degree of activeness) and valence (i.e., degree of happiness) [62]. Combinations
of the two express specific emotional states, e.g., low arousal and low valence represent sadness, whereas high
arousal and high valence indicate excitement.

2.2 Recent Advancements in Emotion Recognition
Inferring emotions is an objective that has been addressed inmany prior studies. Although the task considered here
is similar, the approach differs with regard to the input used. A variety of inputs, ranging from physiological sensors
[52, 68] and facial images [40] to speech [20], have been used. Physiological sensors such as smartwatches allow
for the continuous estimation of a subject’s emotions, inferred based on the heart rate (variability), electrodermal
activity, and accelerometer data. The potential of this technique has been recognised by researchers. Ubiquitous
devices that record physiological data streams can be used to detect emotional states [52, 68]. However, monitoring
physiological signals requires that subjects wear one or multiple devices, which may introduce inconvenience or
discomfort for regular daily use. As an alternative, non-intrusive approaches have been developed. The most
popular methods of emotion recognition are based on facial expressions and speech [20, 40, 81]. Nevertheless,
the continuous recording of a user’s visual or audio information may raise privacy-related concerns.
Inferring emotions from behaviours and contexts is a promising less-intrusive alternative. Data accumulated

from a user’s interactions with everyday devices contain behavioural and contextual information that can act as a
proxy for the experiences or specific emotional states of the users. Researchers rely on devices such as smartphones
to gather this information. The data gathered from smartphones are diverse, and contain information on app
usage, screen time, accelerometer, GPS, SMS, call activity, Wi-Fi, and Bluetooth signals. These data constitute
a digital representation of user behaviour and context, from which their emotional state can be deducted [79].
Several studies [5, 37, 59, 77, 89] have shown that users’ emotions can be inferred from their patterns of mobile
phone usage. Canzian et al. used mobility trace from a smartphone to detect a tendency toward depression [7].
The car, as an everyday device with sensor modalities, allows us to derive the driver’s behaviour and context
as the basis for our emotion recognition algorithms. We propose detecting the driver’s emotions using driving
behaviours as represented by the CAN-bus signals of the car and the context (surrounding traffic) as determined
by the front-view video camera.

2.3 Facial Expressions and Their Annotations
Facial expressions are among the most informative source for the estimation of affective and cognitive states [17].
The Facial Action Coding System (FACS) is an objective and quantitative way to measure facial expression. In the
FACS, action units describe the expressions currently active in the face at any given time, such as "brow furrow"
and "eye widen". As a consequence, facial expressions can be quantified based on the combination and the level
of presence of action units [19, 67]. Various existing works have relied on facial expressions or action units for
the estimation of psychological states [31, 73, 91] or the detection of deception [71].
However, manual FACS-coding requires profound expert knowledge and the process is laborious due to the

manual labelling required. With recent advances in computer vision and machine learning, numerous studies
have proposed the automated recognition of facial expressions [2, 12, 46, 47, 84].

Developments in the automated recognition of facial expressions has had a major impact on affective computing.
Whereas earlier works relied on the manual annotation of facial expressions, an increasing number of researchers
now detect facial action units or acquire emotion labels by using various algorithms. For example, based on
automatically detected facial action units, Sen et al. analysed deceptive communication [71], and Sharam et al.
focused on the assessment of cognitive performance [73]. Rostaminia et al. leveraged the the output of detection
of OpenFace [2] as ground truth labels for the unobtrusive sensing of upper facial action units [61]. To estimate
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emotional experiences during collaborative computer-aided design (CAD), Zhou et al. utilised the results of
detection of facial expressions from Affectiva [47] as the emotion labels of CAD users [91].

Compared with self-report questionnaires, the automated annotation of emotions based on facial expressions
has several advantages. First, automated annotation can significantly reduce the manual labour required, thus
enabling the acquisition of a large number of emotion labels at a more temporally granular level. Second, the
unobtrusive emotion annotation via facial expressions means that the subject’s experience is uninterrupted.
The frame-by-frame annotation of facial expressions enables dynamic representations of how emotion evolve
over time [46]. Finally, by using facial expressions, the cognitive load imposed by self-reports is avoided and the
subjects’ responses are less likely to be biased due to the form of the questionnaires, their context, and other
irrelevant factors [70].
Given the above advantages, we acquire facial expressions-based emotion labels of drivers in this study by

using a facial monitoring camera mounted on the dashboard of the vehicle. Past work [81] has shown that
state-of-the-art algorithms can reliably detect the facial expressions of drivers with an accuracy of around 95% in
various contexts. Thus, in this work, we rely on the automated facial expression annotation tool for the emotion
label acquisition.

2.4 In-vehicle Emotion Recognition
As in the wider field of emotion recognition, researchers use sensors to detect the driver’s emotions in cars.2
Physiological sensors are preferred for measuring stress levels as a specific emotional response of the driver
[26, 60, 64, 82] because stress and emotions in general are highly correlated with physiological measures, such
as the heart rate, the variation in heart rate, and blood pressure [65]. Malta et al. used electrodermal activity
(EDA) in combination with facial expressions, driving events, and pedal behaviours to build a Bayesian network
to predict the frustration of drivers [43]. To infer the comprehensive mental and physical states (concentration,
tension, tiredness, relaxation) of drivers, the authors of [57] built a body sensor network to monitor signals, the
such as electrocardiogram (ECG), electroencephalography (EEG), electrodermal activity (EDA) and respiration
rate. Kato et al. classified emotions as positive and negative based on ECG and pulse wave measurements during
traffic jams [30]. Most in-vehicle emotion recognition based on physiological signals relies on numerous sensors,
which are inconvenient to deploy. Data from physiological sensors as well as those on facial expressions were
used by Zhang et al. to monitor a driver’s emotional states and degree of fatigue [90]. Guang et al. introduced the
first neuromorphic vision based distracted driving recognition system that analyses driver drowsiness, driver
gaze-zone, driver hand-gesture behaviour from the generated streams of asynchronous events with a dynamic
vision sensor [10]. Shafaei et al. proposed a multimodal system that combines facial expressions with steering
wheel usage and vehicular acceleration for emotion recognition [72]. Facial expressions have been used in
industry solutions in this vein. For example, Affectiva has developed an automotive software development kit
that can analyse emotions using a driver-monitoring camera system [48]. Research has also used the driver’s
speech to detect emotions [76]. However, the fundamental barriers of emotion recognition also apply to these
methods. The use of video data for the face or data for speech analysis raises privacy concerns. Physiological
sensors are also particularly intrusive.
Given that today’s car already have a set of sensor modalities, they are already well prepared for emotion

inference. Cars are equipped with a large number of sensors that are accessible via the CAN-bus. In the CAN-bus,
the sensors and actuators of a car transmit comprehensive information about driving-related activities and the
vehicle’s dynamics while the radar and camera systems interpret the environmental context. Researchers have
shown that CAN-bus data can be used to detect driver behaviours to derive the relevant contextual information,
for example, identifying the driver among a group of users [21], the profile of the driving style [44], and the

2We recommend a recent review by Zepf et al. [88] that reports details of research on emotion recognition in a vehicle.
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Fig. 1. Experimental setup.

anticipation of the driver’s intentions [25, 39]. Several studies have explored the use of CAN-bus information
[13, 55] to detect stress using driving behaviours. As this past research indicates, the available sensor data allow
for a wider interpretation beyond their intended usage (i.e., controlling the car). To the best of our knowledge, this
is the first study to detect the driver’s detailed emotional state by passively interpreting data streams available in
today’s cars.

3 DATA COLLECTION
Our analysis is based on a four-mouth field study during which a variety of empirical sensory data were collected
from participants during daily drives. The field study involved nine participants (originally 10; data from one
participant were corrupted, and were thus removed), and lasted from July 4 to November 5, 2019. Prior to the
field study, we received approval from our university’s ethics committee to conduct it.

3.1 Participants
We recruited nine (four females and five males, mean age, 37 ± 8 years) participants using an internal call in
an enterprise with more than 1,000 employees. Our selection followed the idea of recruiting ordinary daily
commuters. They were selected to represent a large variety of people (purposive sampling). Two participants
were single and eight were married. Three had children and two had pets. The preferred activities while driving
included making phone calls, listening to music or the radio, and talking to other occupants of the car. We
assigned each participant the same type of vehicle (with modifications for data collection as described below).
The participants were supposed to use the vehicles for their daily drives, including business trips and vacations.

3.2 Data Collection Equipment and Protocol
As mentioned in Section 1, our hypothesis is that the driver’s emotion can be inferred from driving behaviours and
traffic contexts, which can be measured in turn by the vehicle’s CAN-bus and front-view cameras, respectively.
The emotion labels based on ground-truth facial expressions were captured by another camera mounted on the
dash-board of the vehicle. Because the state-of-the-art affect recognition schemes [26, 52, 68] rely on physiological
sensors, we also collected physiological data of the participants for comparison.

We accessed the CAN-bus data via a PCAN-USB Pro FD-Adapter [24]. Two webcams (Logitech HD ProWebcam
C920) were mounted on the dashboard of the vehicle to record videos of the traffic context 3 as well as the
driver’s facial expressions. The CAN-bus and video data streams were controlled by an industrial-grade embedded

3We used a separate camera for this, and did not rely on the CAN-bus-based radar or camera systems, to make our analysis more flexible
as both systems in the car had only a limited feature set available.
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computer (Compulab IOT-GATE-IMX7), and were stored locally in the vehicles on external hard disks. When the
vehicle was started, the computer initialised the recordings of both types of data. We collected 49 CAN signals,
including those for the speed of the four wheels, accelerator position, angle of the steering wheel, and brake pedal
pressure. A complete list of CAN signals is shown in Table 6 in Appendix A. Figure 1c and Figure 1d show setups
for collecting the CAN-bus data, data from the front-view camera, and data from videos of the driver’s face.

In line with previous emotion recognition studies that used physiological data [52, 68], we collected the heart
rate (HR) and the heart rate variability (HRV) using a heart monitoring device (Firstbeat Bodyguard 2), as shown
in Figures 1a and 1b. All participants were asked to wear the device for the two weeks of the field study. 4 The
sampling rate of the HR and HRV of the heart monitoring device was 1000 𝐻𝑧.

Fig. 2. An example of Affectiva annotation.

3.3 Characteristics of Driving Data
It was crucial for our dataset to capture representative driving situations. This subsection presents some important
statistics related to our dataset.

Jul 1st Aug 1st Sep 1st Oct 1st Nov 1st
#1
#2
#3
#4
#5
#6
#7
#8
#9

0

2

4

6

8

10

Fig. 3. Number of trips per driver and per day.

4We recorded the heart rate signals of the participants only in the first two weeks because wearing the heart monitoring device for a
prolonged time may cause discomfort.
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Fig. 4. Spatial coverage of driving trips.

After data cleansing, we had around 675.6 hours of driving data with videos from front view camera as well
as videos of the driver’s face. Figure 3 plots the number of trips5 per day for each participant during the field
study. The overall average number of trips per day was greater than one, and the participants had up to 10 trips
per day. Most participants were working during the period of our field study, except drivers #3 and #9, who had
taken vacations in July and August. The total driving distances of each participant are plotted in Figure 4a. Most
drivers drove for reasonably long distances (more than 3000 𝑘𝑚) during the field study. The average trip length
and duration were around 25 𝑘𝑚 and 23𝑚𝑖𝑛, respectively. The GPS records of the vehicles are presented as a
heatmap in Figure 4b. As is shown there, most participants drove around the area of Stuttgart, Germany. A few
long-distance trips were also taken to Prague and northern Germany.
Overall, our dataset covered a wide range of daily driving activities. All participants were active in terms of

the number of trips per day and driving distance. The coverage and diversity of the dataset ensured that our
experiments were generalisable to heterogeneous situations and drivers.

3.4 Characteristics of Emotion Labels
This subsection describes the statistics of the ground-truth emotion labels acquired from the Affectiva algorithm
as well as the procedures for data cleansing, pre-processing, and transformation that were applied to them.

3.4.1 Emotion Annotation Tool. Affectiva spun out of MIT’s Media Lab. Its emotion recognition technology
uses computer vision algorithms and deep learning models to estimate emotions based on facial expressions.
Unlike other solutions based on the recognition of facial expressions, Affectiva’s algorithms are built on a very
large foundational dataset, containing more than 9.7 million facial images of people from 90 countries, with
over 5 billion facial frames and six years of video data. Affectiva’s deep learning algorithms are optimised with
automotive in-cabin data, including more than 20,000 hours featuring more than 4,000 unique individuals [48].

5A trip was defined as a segment of continual driving behaviour without a pause longer than 10 minutes.
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Given these features, Affectiva’s solution can reliably capture driver emotions. In our experiment, we used one of
the latest stable versions (ics-2.2.1) of Affectiva for annotation.
Affectiva detects the facial expression of the subject for every frame. For all emotions except for valence, it

outputs a score between 0 (absent) and 100 (present), indicating the presence level of the relevant emotions [47].
The emotions included anger, disgust, fear, joy, neutral, sadness, and surprise. The score of valence ranged from
-100 to 100, and thus was divided into negative and positive valence (unhappy to happy).

3.4.2 Emotion Persistence. Facial expressions are often not long-lasting, with a duration between 0.5𝑠 - 4𝑠 [16].
An example is provided in Figure 5. To ensure that the driver’s most prevalent and stable affective states were
captured accurately, we applied a non-overlapping sliding window and divided the driving data into driving
segments. The emotion labels were defined according to their average level of presence in each driving segment.
Our objective was therefore to predict driver emotion using the CAN-Bus data and data from the front-view video
of the same driving segments. An illustration of this setting is provided in Figure 6. By adjusting the length of the
sliding windows (and hence the length of the driving segments), driver emotion could be recognised at different
granular levels. We defined the default length of the driving segments as 10𝑚𝑖𝑛𝑠 to capture emotions (directed
and intensely) rather than affects (short and raw) or moods (long and diffuse) 6. In addition, the combination of
the sliding window and the temporally continuous annotation from Affectiva enabled emotion recognition at
any time during drive.

Owing to inevitable occlusion (e.g. from driver turning head), and undesirable illumination, facial expressions
could not be detected in every frame. Only in a subset of the frames were both the driver’s face and their facial
expressions detected. We refer to such frames as valid frames. To ensure the quality of the label, we considered
only the driving segments that contained more than 70% of valid frames. The labels of the driving segments
were then computed as the average level of presence of an emotion over all valid frames. Such a quality check
reduced the amount of driving data being used for training and testing, as some driving segments were discarded
owing to an inadequate number of valid frames. From 675.6 hours of driving data, we obtained a total of 19, 885
two-minute driving segments (equivalent to 662.8 hours of data) or 3, 377 10-minute driving segments (equivalent
to 562.7 hours). Trips shorter than 10𝑚𝑖𝑛𝑠 were not included in the 10-minute driving segments, which led to
the different number of driving hours between the types of segments.

3.4.3 Emotion Distribution. It is critical to inspect the label distribution to understand how reliable we can
predict the emotions and to ensure that our ground truth is valid. As described in Section 3.4.2, the emotion labels
were the average presence level of emotions over driving segments of a predefined length. Figure 7 illustrates the
distribution of emotion labels of the 10-𝑚𝑖𝑛 driving segments The following observations can be made from it:

• The drivers elicited more negative valence than positive valence. This can be explained by the fact that
driving is a task that requires high cognitive load and induces stress [9, 29].

• Driving had a varying impact on the drivers, which was reflected in the distinct personalised mean values
of each emotion across different drivers.

• Most emotions have a low presence level. This can be explained by the instantaneous nature of facial
expressions: The values shown in Figure 7 were averaged over segments of 10𝑚𝑖𝑛𝑠 of driving; owing to
the instantaneous nature of facial expressions, as illustrated in Figure 5, the values were balanced out by
non-present moments, in which a given expression was absent from the subject’s face.

3.4.4 Transformation of Emotion Labels . Before conducting further data analysis, we needed to address common
affective computing-related issues with our data.

6The analysis of different lengths of driving segments is provided in Section 5.3.2
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Fig. 5. An example of the raw output of Affectiva results over time.

Traffic context is collected from vehicle front view camera (data resampled to 10Hz)

Driving begins Driving ends

CAN-Bus data is collected during drives (data resampled to 10Hz)

Facial Expression based emotion from driver face camera, annotated using Affectiva

Input 1 :

Label: emotion 
annotation

Input 2:

Driving segments, no gap or overlap btw. 
subsequent segments

. . .

Video data
CAN-Bus data Machine Learning 

Model
Avrg. emotion of 
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Fig. 6. Data and emotion labels used for our data analysis.

As discussed in Section 3.4.3, each participant had their personalised baseline (i.e. different mean values)
of emotions in the context of driving because emotions are subjective, and their interpretation among people
differs [45, 85, 86]. Such subjective factors introduced bias to the emotion recognition. Therefore, the emotion
labels of each participant were calibrated following a personalised emotion label transformation, as described in
Equation 1. This binarisation processing procedure was similar to that in [7, 14, 50, 71].

𝑒𝑚𝑜𝑡𝑖𝑜𝑛 𝑙𝑎𝑏𝑒𝑙 =

{
𝑙𝑜𝑤 𝑐𝑙𝑎𝑠𝑠, 𝑖 𝑓 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 < 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑠𝑒𝑑 𝑚𝑒𝑑𝑖𝑎𝑛

ℎ𝑖𝑔ℎ 𝑐𝑙𝑎𝑠𝑠, 𝑖 𝑓 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 >= 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑠𝑒𝑑 𝑚𝑒𝑑𝑖𝑎𝑛
(1)
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Fig. 7. Violin plots of the emotion distribution of each driver.

Such a transformation accounted for variations in individual perceptions of the driving task. Owing to the
continuous values of the annotation, we have almost balanced the emotion labels for low and high classes (average
proportion of majority class = 50.6% ± 0.7%) after label transformation. The objective of our final prediction was
to determine whether a driver’s emotion positively or negatively deviated from their personal baseline.

4 METHODOLOGY
This section explains our methodology to infer the driver’s emotions based on their driving behaviours (CAN-bus
data) and the traffic contexts (video data). We first introduce the data pre-processing and feature engineering for
each sensor modality in Section 4.1, and then detail the inference models based on the CAN-bus and video data
as well as their combination in Section 4.2.

4.1 Data Pre-processing and Feature Engineering
We briefly explain the candidate features extracted from CAN-bus, front-view video, and additional data sources.
Note that we focus on interpretable features that have been proven to be effective in research on sensing the
activities of the driver.

4.1.1 Features from CAN-bus Data. The CAN-bus data were used to capture driving behaviours and vehicular
dynamics. By using 49 CAN data signals, we chose the following as candidate features because they were the
most common across different vehicles and, thus, could guarantee the capability of generalisation of our analysis.
They were as follows: angle of the steering wheel, yaw rate, brake pressure, pedal position of the accelerator,
speeds of the four wheels, longitudinal and lateral acceleration, and rotational speed of the motor.
Because the recording of the raw CAN-bus data was not synchronised, we re-sampled them to 10 𝐻𝑧, which

is suitable for CAN-bus data processing [25]. Following the common practices for such data processing [21],
the re-sampled CAN-bus data streams were split into sliding windows, from which features such as statistical
features, auto-correlation etc., are derived to form a feature vector. Our tests of several sliding windows with
different lengths resulted in five-second-long windows without overlap. These comparably short windows are
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common in CAN processing and seem to capture single driving manoeuvres [21, 39]. Table 1 lists the features
derived from the CAN-bus data streams.

Table 1. Input signals and derived features from CAN-bus data. The features have been widely used for CAN-bus data
processing [21], and were intended to capture driving behaviours and vehicular dynamics. The dimensions of certain features
are noted in brackets.

Input Signal

Steering wheel angle,
Yaw rate,
Brake pressure,
Accelerator pedal angle,
Speeds of the four wheels,
Longitudinal and lateral acceleration,
Motor rotational speed

Derived Features for CAN data

min, max, mean,
std. dev., median,
kurtosis, skewness,
quantile (25%, 75% and 95%),
piece-wise approximation (14D),
auto-correlation (50D),
log(FFT) (26D),

4.1.2 Features of Front-view Video Data. Video data from the front-view camera were expected to reflect the
traffic contexts. Because we hypothesise that the driver’s emotions can be inferred from traffic contexts, it is
reasonable to assume that these contexts are easy to perceive and interpret by humans. Following this assumption,
we derived the video-based features from objects detected by using the available object detection algorithms.
Deriving pixel-wise features from videos for recognising the driver’s emotion is beyond the scope of our work.
We applied Yolo-v3 [58] to detect a subset of objects related to the driving context (small vehicles, trucks,

pedestrians, and cyclists), and used the location and size of each object as candidate features. The videos were
re-sampled to 10 frames per second, and Yolo-v3 detection was used on each frame.
To infer driver emotion from traffic situation, it is important to involve lane information as it can affect the

cognitive load on drivers [35]. With lane information, the relative position of the surrounding traffic participants
can be better determined. However, state-of-the-art lane detection [53] algorithms are computationally expensive
and limited in their availability to researchers. We used a simplified method to gain lane-related information. We
split an image into three columns, corresponding to [0,0.25), [0.25,0.65) and [0.65,1] along the lateral axis. These
columns were approximated as the left, middle, and right lane from a drivers perspective, respectively. In addition,
past research [35] has shown that drivers are more sensitive to closer vehicles than distant ones. Therefore, the
trade-off between accuracy and simplicity was acceptable even though the correspondence between the split and
the lanes was valid only in the near-range of the ego-vehicle. Moreover, such an approximation was supported
by the distribution of the detected positions and number of vehicles captured by the front-view camera as shown
in Figure 8b. The lateral distribution of the detected objects was approximated by a Gaussian mixture model with
three clustering centres. For each approximated lane we computed the statistical features and auto-correlation
of the number and the sum of the sizes of the detected objects in it in each sliding window (the same sliding
windows as for CAN-bus data). Each approximated lane was used to compute 120 features, for a total of 360
features from the results of detection using Yolo-v3. These are summarised in Table 2.

4.1.3 Features from Auxiliary Data Sources. Because emotions vary over the course of a day [15], we considered
temporal features to recognize the emotions of the driver using the following: seconds before dawn, seconds after
dusk, seconds before sunrise, seconds after sunset, indicator of driving at night, current time (formatted in the
24h-scale), and the day of the week. The first four features were set to zero if driving had occurred after or before
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Fig. 8. Simplified lane separation.

Table 2. Features of traffic.

Input Signal

Yolo detection results:
- Class (vehicle, cyclist, or pedestrian)
- Confidence, coordinates of bounding
boxes 10 most confidently detected
objects in each frame

Derived Features for Video data

min, max, mean, std. dev.,
median, kurtosis, skewness,
quantile (25%, 75%, or 95%),
and auto-correlation of number
of objects and sum of sizes
in each approximated lane
in a sliding window

the corresponding event to ensure that there were no negative values in the temporal features. The temporal
features were computed for every five seconds by using a sliding window based on the time associated with the
corresponding windows. From each five-second sliding window, a temporal feature vector of seven dimensions
was computed. That is to say, for instance, from a 10-𝑚𝑖𝑛 driving segment, a 120-𝑠𝑡𝑒𝑝 (10𝑚𝑖𝑛 / 5𝑠 = 120)
sequence of 7D temporal feature vectors was computed. We did not perform feature selection on the temporal
features, and simply concatenated this temporal sequence of feature vectors to the sequences obtained from CAN
data, videos, or a fusion of the two.

4.1.4 Summary of Features. From each sliding window, we computed 1100D, 360D, and 7D feature vectors for the
CAN-bus, front-view video, and temporal modalities, respectively. Each modality therefore contained a sequence
of feature vectors of the same sequence length. For example, the sequence length of a 10-𝑚𝑖𝑛 driving segment was
120 (10𝑚𝑖𝑛 / 5𝑠 = 120). For each driver, we computed the p-values associated with each dimension of the feature
vector by using an ordinary least-squared regression for every emotion. We selected only the 10 dimensions
with the lowest p-values as input from each modality (i.e., the CAN-bus and front-view videos) per emotion for
each driver. The cumulative distribution of the p-values of the selected dimensions of the feature vectors are
plotted in Figure 15 in Appendix A. Note that for most signal sources, more than 80% of the selected features
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had p-values lower than 0.05. We leveraged multi-task learning approach, a method that has been proven to
be useful in recognising emotions or activities [63, 68], to build a neural network to predict all emotions at the
same time. This meant that for every driver in the training set, 80 (10D, eight emotions = 80) CAN features, 80
video features and seven temporal features were considered. If a feature was relevant to multiple emotions, it
was selected only once. If multiple drivers were in the training set, the union of the selected features was used.
Therefore, the number of selected features varied depending on the drivers in the training set.

4.2 Driving Behaviour- and Context-based Inference Models
In this subsection, we first introduce the driving behaviour- and context-based models using data from only
either CAN-bus or front-view videos as input, followed by a combination of the two (i.e., sensor fusion).

4.2.1 CAN-bus-only Model. Random forest approaches, as for example in [21], can be used to process CAN-bus
data. However, they require hand-crafted features and are unable to capture temporal dependencies between
these feature vectors. By contrast, the approaches based on recurrent neural networks (RNN) like the one in
[25] can model the time dependence on a wider time scale even without explicit feature creation. However,
such end-to-end training methods must learn the knowledge of carefully designed features and requires larger
amounts of data. Our method combines the advantages of both. Our pipeline begins by computing the feature
vectors of CAN-bus data using sliding windows as shown in Table 1 and Section 4.1.1. Then, the feature vectors
are fed sequentially into a RNN.
The RNN can learn a high-level abstract summary of the data from the sequence of feature vectors. This

summary is then processed by a fully connected network that outputs a probability distribution as a prediction of
low and high states of a certain emotion. The detailed settings of the proposed method are as follows: We choose
an RNN architecture with two layers, where each consists of 64 gated recurrent units (GRUs). This architecture
is similar to [25], where they have input dimension of 665 and two layers RNN with 256 gated recurrent units
is used. We have proportionally applied the similar reduction from our input dimension to the gated recurrent
units. The CAN-bus and time feature vectors are concatenated in each sliding window. Our RNN has a simple
structure because manual feature extraction and feature selection are applied a priori, which significantly reduces
the complexity of the input. The input to the RNN is a sequence of feature vectors with reduced dimensions.
We leveraged a multi-task learning approach to build a neural network that predicted all emotions at the same
time. As the labels were almost balanced for every emotion, we randomly shuffled the training batches to obtain
an almost equal number of low- and high-state samples on average for each emotion in every training batch.
We used the Adam [33] optimizer and cross-entropy as loss functions, as described in Equation 2. The ReLU
[51] was applied as activation function to the fully connected layers. The learning rate was set to 0.005. The
hyper-parameters/parameters are empirically tuned to achieve the best emotion recognition performance. We
trained the neural network until its loss converges. The inverse proportion to the class ratio was assigned as
weight to the loss function:

L =

𝑛∑
𝑖=1

−𝑤𝑖 [𝑦𝑖 · 𝑙𝑜𝑔 𝜎 (𝑥𝑖 ) + (1 − 𝑦𝑖 ) · 𝑙𝑜𝑔(1 − 𝜎 (𝑦𝑖 ))] (2)

with

𝑤𝑖 = 𝑛/
𝑛∑
𝑗=1

(1 − 𝑦𝑖 ) (1 − 𝑦 𝑗 ) + 𝑦𝑖𝑦 𝑗 (3)

where 𝑥𝑖 and 𝑦𝑖 are the prediction and ground truth for the 𝑖𝑡ℎ sample, respectively, and n is the total number of
samples. The framework of the proposed method is illustrated in the CAN-only branch of Figure 9.
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Fig. 9. Multi-modal recurrent architecture for recognising the driver’s emotion: CAN-only model, Video-only model and
fusion model.

4.2.2 Front-view Video-only Model. Apart from the modality of the input, the structure and settings for the
front-view video-only model were identical to the CAN-bus-only model. The feature vectors of video replaced
those of the CAN-bus as explained in Section 4.1.2. Vectors of the video and the time feature were concatenated
in each sliding window. The framework of the front-view video-only model is illustrated in the Video-only branch
of Figure 9.

4.2.3 Fusion Model. We then integrated the two sensor modalities into a joint inference model, called the fusion
model. To fuse the sensor data of the CAN-bus with the front-view video, we constructed fused feature vectors
formed by concatenating the feature vectors as described in Sections 4.2.1 and 4.2.2. The rest of the network
architecture and settings constant are kept constant. The sensor fusion model is illustrated in the fusion branch
of Figure 9.

5 EVALUATION
Our evaluation section has three parts. In Section 5.1, we evaluated our driving behaviour- and context-based
inference models. In Section 5.2, we described the baseline methods and compared their results with that of our
proposed method. Finally, in Section 5.3 we investigated the stability, usability, and complexity of our approach.

To avoid misinterpretation, the macro-F1-score that we used is formalised in Equations 4 - 7, where 𝑡𝑝 , 𝑓 𝑝 , and
𝑓 𝑛 represent the true positive, false positive and false negative, respectively, depending on the level of presence
of each emotion, and subscript (𝑐) distinguishes between low-and high-scoring classes, i.e., (𝑐) = (𝑙𝑜𝑤) 𝑜𝑟 (ℎ𝑖𝑔ℎ).
For the sake of brevity, all F1-scores in this paper refer to the macro F1-score.
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As mentioned in Section 3.4.2, the driving segments were generated by using non-overlapping sliding windows
to ensure that there was no intersection between any pairs of driving segments. For intra-subject evaluation, we
built a personalised model for each driver by randomly dividing their driving segments into training (70%) and
test (30%) datasets. For the leave-one-subject-out (LOSO) evaluation, we used the driving segments from the
𝑖𝑡ℎ driver as test data and the data from the remaining 𝑁 − 1 drivers is used as training data. In our case, 𝑖 was
iterated from one to nine. All the experiments were repeated 10 times by using 10 different random seeds for
both intra-subject and LOSO evaluations. The F1-scores presented are the average of the 10 repetitions of all
drivers. The standard deviations of the 10 repetitions are indicated as error bars in the corresponding figures.

𝐹1 = (𝐹1(𝑙𝑜𝑤) + 𝐹1(ℎ𝑖𝑔ℎ) )/2 (4)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑐) = 𝑡𝑝 (𝑐)/(𝑡𝑝 (𝑐) + 𝑓 𝑝 (𝑐) ) (5)

𝑟𝑒𝑐𝑎𝑙𝑙 (𝑐) = 𝑡𝑝 (𝑐)/(𝑡𝑝 (𝑐) + 𝑓 𝑛 (𝑐) ) (6)

𝐹1(𝑐) =
2

𝑟𝑒𝑐𝑎𝑙𝑙−1(𝑐) + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1(𝑐)
(7)

5.1 RQ1: To what extent can the emotions of drivers be inferred based on (a) CAN-bus data streams,
(b) front-view camera, and (c) the combination of both (fusion)?

Table 3 summarises the results of our proposed models for intra-subject and leave-one-subject-out (LOSO)
evaluations. The best performance scores are highlighted in bold. In the intra-subject evaluation settings, the
results indicate that the fusion model achieved the best performance scores on all emotions. For all emotions
combined, our CAN-bus-only model achieved an F1-score of 68.8%. Our video-only and fusion models improved
this score to 69.9% and 71.0%, respectively. With limited fluctuations, all emotions achieved comparable equally
high scores. This suggests that a comprehensive recognition of the driver emotional state was possible in intra-
subject setting. We then inspected the generalisability of the proposed models by exploring the results of the
LOSO evaluation.

Compared with the setting for the intra-subject evaluation setting, the LOSO evaluation yielded lower scores.
This was expected because emotion is subjective and user-independent emotion recognition remains a daunting
challenge in affective computing community. The F1-scores achieved by the fusion model highlighted the varying
performance across all emotions in the LOSO setting. Whereas the emotions of anger, disgust, neutral, sadness,
and valence yielded relatively high scores of 63.8%, 64.5%, 62.8%, 63.5%, and 62.4%, respectively, those of fear,
joy and surprise were less accurately detected, with F1-scores of 48.7%, 58.7% and 49.8%, respectively. These
varying performance scores across emotions also accounted for the results of the CAN-bus-only and front-view
video-only models. We conclude that some emotions were more difficult to detect than others independently of
the sensor modality in the LOSO setting.

Furthermore, we plotted the confusion matrix of the fusion model to better visualise the results in Figure 10. For
the personalised setting, the fusion model predicted the low and high classes with comparatively equal accuracy
for all emotions, despite small variations. For the LOSO settings, we observed similar patterns (i.e., higher values
along the diagonal of the matrix) except in case of the emotions of fear and surprise. The confusion matrix shows
that our proposed solution was not biased towards the low or the high class, which reflects the stability of our
results. While the LOSO evaluation in general achieved lower F1-scores than the personalised evaluation, the
confusion matrix showed that anger, sadness, and valence could be relatively accurately recognised in the LOSO
settings. The more reliable detection of these three emotions in the LOSO settings is in line with existing findings
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Fig. 10. Confusion matrix for fusion modality.

in literature providing evidence that they are closely related to driving performance and safety [8, 28, 78, 80].
For the sake of completeness, the confusion matrices of the CAN-only and video-only models are provided in
Figures 16 and 17.
In summary, the F1-scores estimated using intra-subject and LOSO cross-validation indicate that emotions

could best be inferred based on a combination of CAN-bus data and front-view camera data. The use of single
modality models leads only to a minor reduction in performance.

Table 3. Intra-subject and LOSO cross-validation: comparison between the driving behaviour- and context-based inference
models as well as the fusion of both modalities. The best results of the three models (CAN, video, and fusion) are highlighted.

Personalised Model LOSO Model
F1-score (%) CAN Video Fusion CAN Video Fusion

anger 69.8 71.2 72.3 62.9 62.3 63.4
disgust 69.9 71.8 72.8 63.7 63.7 64.5
fear 69.1 69.2 70.5 48.0 49.3 48.7
joy 67.8 67.5 68.6 59.3 58.3 58.7

neutral 68.3 69.6 70.9 61.9 60.6 62.8
sadness 68.1 70.2 70.6 62.4 61.8 63.5
surprise 69.5 69.6 70.9 49.3 49.7 49.8
valence 68.3 70.4 71.1 60.5 60.2 62.4

average 68.8 69.9 71.0 58.5 58.2 59.2

5.2 RQ2: How much improvement does emotion recognition based on vehicle data offer compared
with state-of-the-art methods based on physiological sensors?

The performance scores of our models were compared with a physiological signals-based baseline. Physiological
signals are widely used for emotion recognition [13, 23, 26, 68] because emotions have an influence on the
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autonomic nervous system [34], which is highly correlated with such physiological measures as the heart rate,
heart rate variability, and blood pressure [65]. We used the emotion recognition models proposed by Nardelli
et al. [52] as our physiological sensor baseline. In [52], the emotion of subjects were induced by affective sounds
in lab settings. During the experiments, the heart rate variability (HRV) data of the subjects were collected. The
authors derived features of the time and frequency domains as well as non-linear features, and performed feature
selection using the Friedman test and Wilcoxon signed-rank test. A quadratic discriminant classifier was then
used for classification, and yielded an accuracy above 80% for valence and arousal by using the LOSO procedure.
For the convenience of the readers, a comprehensive list of HRV features are provided in Table 7.

Combinations of valence and arousal express specific emotional states according to Russel’s circumplex model
[62]. For example, low arousal and low valence represent sadness, whereas high arousal and medium valence
indicate happiness. Therefore, the model from [52], designed for valence and arousal recognition, was used as
a proxy for the recognition of a variety of emotions, in preference to models that focus on detecting stress or
frustration [26, 43, 60, 64]. Furthermore, unlike other physiological sensors-based approaches [23, 26, 68], the
one in [52] does not require such physiological signals as the photo-plethysmogram, skin temperature, and skin
conductance. Therefore, this baseline approach, by relying only on HRV data represents the available commercial
wearable solutions to emotion recognition [41]. Moreover, our in-vehicle environment resembled the laboratory
settings in [52] because the subjects were seated and no dramatic physical movements were allowed. Therefore,
[52] was a suitable and competitive baseline.
We replicated the method developed by Nardelli et al. as our physiological sensor baseline, and refer to it as

the baseline method. In accordance with our evaluation scheme in Figure 6, we used HRV data of the driving
segments to predict the emotion labels in them. The baseline was evaluated and compared with our approach
on a subset of the available driving data because HRV data were collected from the participants over only a
two-week period. Therefore, only around 65 of the 675 hours of the data on the trips contained the relevant HRV
data, corresponding to 388 samples of 10-𝑚𝑖𝑛𝑠 driving segments. Although the HRV subset constituted only 9.6%
of the entire dataset, it was still larger than the dataset used in [52], which consisted of only 208 samples.

Since the baseline [52] was conducted in lab condition, we optimised it to our context by exploring prevalent
machine learning models in affective computing including Random Forest, Gradient Boosting, Support Vector
Classifier, Extra Trees Classifier, Decision Trees as well as our proposed recurrent neural network. We performed
grid search for optimal parameters and found that Extra Trees Classifier (the number of trees = 50, maximum
depth of the tree = 20, and the minimal number of samples per split = 2) achieved the best performance. We refer
to this optimised model as baseline*.
A comparison between the proposed method and baseline* method is provided in Table 4 7. Our proposed

methods outperformed the baseline* method in most of the cases. The scores in Table 4 are lower than those in
Table 3. Such a decrease in model performance is expected, because we used a smaller dataset for comparison
with the HRV baseline, and our proposed method relies on deep learning. We discuss this instance of performance
and the dataset size in more detail in Section 5.3.1. The reduced performance of the baseline method compared to
our approach is barely explainable due to a small dataset because our sample size (388) is much larger than the
dataset (208) used in [52]. Therefore, our proposed method is better suited for in-vehicle emotion recognition
than the state-of-the-art based physiological sensor-based approach.

5.3 Analysis of Stability, Usability, and Complexity of Proposed Solution
In this section, the stability, usability, and complexity of the proposed solution are analysed in detail.

5.3.1 Stability vs. Dataset Size. Like all intelligent learning systems, the performance of our proposed method is
sensitive to the amount of training data used. Hence, we analysed changes in the performance of our models with

7The comparison between the proposed method and baseline method is provided in Table 8 in the Appendix
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Table 4. Intra-subject and LOSO cross-validation: comparison between the baseline* and the proposed three models.

Personalised Model LOSO Model
F1-score (%) CAN Video Fusion baseline* CAN Video Fusion baseline*

anger 63.1 63.4 61.5 58.7 51.4 52.9 50.8 44.4
disgust 64.4 66.1 62.1 60.6 52.4 50.8 49.5 47.9
fear 62.0 59.5 56.8 55.8 54.7 54.0 50.6 49.9
joy 62.1 63.5 64.5 59.7 56.6 54.8 53.3 54.3

neutral 64.3 64.5 64.0 56.5 54.6 51.6 52.4 49.0
sadness 63.7 64.3 62.9 59.8 48.0 49.8 47.4 45.3
surprise 66.4 64.7 66.1 58.2 54.3 50.7 49.3 55.4
valence 66.7 61.0 62.4 62.5 47.9 50.2 46.4 45.7

average 64.1 63.4 62.5 59.0 52.5 51.8 50.0 49.0

the size of the training dataset for both intra-subject and LOSO evaluations. We changed the size of our training
dataset by randomly removing a certain amount of data while keeping the size of the test dataset constant: a
total of 30% of the dataset (intra-subject evaluation) or data for one driver (LOSO evaluation).
Figure 11a depicts the results of the stability analysis of the intra-subject evaluation. In general, despite

fluctuations in case of small amounts of available data, the performance patterns of different modalities stabilised
once the training dataset had reached 40% of its original size. After stabilisation, our fusion model outperformed
the CAN-bus-only and front-view video-only models by around one standard deviation, independently of the
size (> 40%) of the dataset. Overall, there is potential to further improve the performance by increasing training
dataset size. However, it should be noted that the performance improvement relative to dataset size starts to show
the sign of saturation after the training dataset size reaches 40% of its original size. Therefore, the performance
we showed in Table 3 is very close the the upper bound if more data is available.

We performed the same stability analysis on the LOSO evaluation as shown in Figure 11b. The performance
began to saturate as the size of the dataset increased to over 40% of the original dataset. After saturation, the
fusion model consistently showed slight improvements over the CAN-only or Video-only models.
Another bottleneck in the LOSO model was the dataset diversity, i.e., the number of training subjects. The

higher the diversity of the dataset was, the greater was the possibility that the model finds generalisable patterns
among the drivers. To verify this hypothesis, we evaluated our LOSO model with different numbers of subjects in
the training dataset. This is depicted in Figure 12. While the overall performance saturated once four drivers had
been included in the training dataset, the standard deviation dropped drastically as more drivers were included.
This indicates the importance of diversity among the training subjects for model stability in emotion recognition.

5.3.2 Analysis of Usability. First, we analyse emotion recognition at different temporal granularities. As described
in Section 3.4, the length of the driving segments could be adjusted to infer driver emotions at different granular
levels. To inspect the performance of the model from this perspective, experiments were carried out on segments
with lengths of 2-𝑚𝑖𝑛𝑠 (19,884 samples), 5-𝑚𝑖𝑛𝑠 (7,540 samples) and 10-𝑚𝑖𝑛𝑠 (3,377 samples), and entire segments
of trips 8 (1,773 samples).
Both the personalised and the LOSO models delivered the best performance on data on 10-𝑚𝑖𝑛 segments of

driving. Despite having around two times more training samples than the setting for the 10-𝑚𝑖𝑛 driving segments,
emotion recognition on the 5-𝑚𝑖𝑛 driving segments achieves inferior results. The performance on entire trips in

8A trip is defined as the duration from the driver starts driving until he/her ends driving. Therefore the trips have varying length.
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Fig. 11. Model performance vs. size of training dataset.
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Fig. 12. Model performance vs. number of drivers in training set, LOSO model.

terms of recognition was by some distance the poorest. There are several possible explanations for this: a) driver
emotions fluctuating while driving, where the proposed method was able to better infer a driver’s prevalent
emotional state over a certain period (in our case, around 10𝑚𝑖𝑛𝑠) than the instantaneous detection of emotion,
b) events during driving having varying impacts on the drivers’ global emotions, and c) the total number of
training samples for segments of entire trips being only half of those for the 10-𝑚𝑖𝑛 segments, in which case the
reduced dataset had a negative impact on performance.

The proposed solution could best infer driver emotions at approximately 10-𝑚𝑖𝑛 intervals. Emotion recognition
at a higher temporal resolution led to a decline in performance. This analysis shows that minute-level emotion
recognition is possible by using the proposed solution. The high temporal resolution enables a more granular
understanding of the evolution of driver’s mental status evolving over time, and hence provides more opportunities
for numerous applications. For example, just-in-time emotion regulation can be better applied at the appropriate
time in this way.

Next, the analysis of ablation study on CAN sensors is provided. We performed an ablation study by using only
one, or a subset of, CAN sensor(s) to understand behaviour-based affective computing. The results are illustrated
in Figure 14.
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Fig. 13. Model performance vs. segment length.
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Fig. 14. CAN-only model performance vs. ablation on CAN sensors: select only features from one sensor. Note: Steer. & Veh.
Acc contains steer. wheel angle, lat. & long. acceleration and accelerator pedal; this subset replicates the settings in [72].

For personalised models, lateral acceleration (lat. acc.), yaw rate, and steering wheel angle and vehicle accel-
eration (Steer. & Veh. Acc) perform the best among all CAN sensors. That is to say, the emotion of individual
person, to a certain degree, can be better traced by using vehicular dynamics (i.e., lat. acc. and yaw rate) than
the interaction between the driver and the vehicle (accelerator pedal and brake). For the LOSO model, steering
wheel angle (steer. wheel) achieved the best F1-score with a low standard deviation, which means that steering
wheel-related behaviours were more generalisable than other sensors among users.

Overall, the reduced number of CAN sensors had a negative impact on the CAN-only model. However, the
degradation in performance in terms of emotion recognition performance was moderate. Even with only one
CAN sensor (lat. acc. for personalised models and steer. wheel for LOSO models), the CAN-only model achieved
F1-scores that were only around 2− 3% lower than if all sensors were used. The ablation study thus demonstrated
the flexible usability of the proposed solution in case certain CAN sensors are not available.
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5.3.3 Model Complexity. In this section, the model complexity of the proposed solution is analysed as it is vital
for mobile and ubiquitous applications to run efficiently. Our model had a varying number of input dimensions
depending on the feature selection process. Therefore, the number of model parameters was not fixed. As a
reference, a model with a feature vector containing 100 dimension had 79,560 parameters and a size of 180KB.
Time complexity was mainly evaluated based on the CPU setup: Intel Core i5 1.4 GHz Quad-Core, 16 GB LPDDR3.
To better outline the performance of current advancements in GPU-accelerated parallel computing, Yolo-v3
object detection was also evaluated on GPU setup: Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz, 196 GB LPDDR3,
GeForce RTX 2080 Ti.

Table 5 shows the time complexity of each stage of processing of the proposed method on a 10𝑚𝑖𝑛 segment. The
proposed solution relied on explicit feature engineering in combination with a simple recurrent neural network.
Therefore, the data pre-processing and the feature generation had higher time complexity. The main bottleneck
of data pre-processing was the Yolo-v3 object detection on CPU-setup. However, potential improvements can
help avoid this for ubiquitous in-vehicle emotion recognition, especially when the proposed solution is deployed
on mobile devices:

• Subject to local legislative permission, the Yolo-v3 object detection can be delegated from mobiles devices
to a cloud service with GPU devices. In our case, a 10-𝑚𝑖𝑛 segment of a video at 10FPS and a resolution of
640 × 360 had a size of only around 50 MB, which is acceptable in light of current mobile network capacity.

• An increasing number ofmobile devices are now equippedwith neural processing units that can significantly
reduce the computation time and energy consumption for object detection on mobile devices.

• Our proposed video feature engineering relies only on size and location of the surrounding objects. Such
information is already available in vehicles that are equipped with a radar or visual sensing systems. Thus,
integrating the proposed solution into vehicles will not impose an additional computation burden.

Table 5. Time complexity for processing one 10𝑚𝑖𝑛 driving segment.

CAN Yolo-v3 detection CAN feature Video feature
Inferenceresampling CPU GPU generation generation

Wall-time (s) 10.65 8028 75 1.22 1.05 0.20

In conclusion, the run-time complexity analysis demonstrates that the proposed solution has significant
potential for the deployment on mobile devices (e.g., in combination with driving recorders or smartphones
mounted on dashboards), or for integration into an on-board computer of vehicles.

6 DISCUSSION
In this section, we discuss the results of our work. We outline the potential and limitations of the proposed
non-intrusive approach with a special focus on privacy protection.

6.1 Non-intrusive In-Vehicle Emotion Recognition and its Contribution to the Car of the Future
In this subsection, we present the current solution offered by OEMs to infer emotions and highlight the possible
impact of our approach on it. Braun et al. reviewed concept cars because corporate research is not often published
in the technical literature [4]. For example, Audi presented its concept car, Elaine, which is similar to the solution
proposed by Mercedes–Benz [1]. Elaine is capable of detecting stress and fatigue based on body temperature
and heart rate obtained through wearable devices. Actions are subsequently triggered based on the recognised
emotions. Such actions can be interventions, adaptive music, ambient light, or empathetic speech. Although the
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actions differ among Original Equipment Manufacturers (OEMs), most of them are similar in that emotions are
recognised based on sensors that increase cost and might breach the user’s privacy.
Unlike the above-mentioned emotion recognition methods that require physiological sensors or the facial

images of users, our methods rely solely on a set of existing sensor modalities - CAN-bus and sensors that are
going to be installed in future vehicles - traffic sensing systems, such as the radar, Lidar, and visual sensing
systems. We used front-view cameras to capture traffic context. This paper showed that the analysis of driving
behaviour and the context of an everyday task, i.e., driving, can help form a reliable estimate of the driver’s
emotional state. We used Affectiva to annotate the facial expressions of the drivers. Our algorithms were able to
differentiate among 8 emotions to provide a detailed picture of the individually perceived emotions. In contrast
to prevalent technologies that conduct frame-by-frame predictions (e.g., Affectiva [48]), our solution offers an
assessment of the emotion of the driver over a certain period, based on their driving behaviour and the traffic
context. Although, initially it seems that both approaches are ambivalent, we believe that they are complementary.
The emotional spectrum ranges around different origins. While Affetiva focuses on short and raw affect, our
approach is more geared towards directed and less volatile emotions and can better protect user privacy.
Our approach is fully comparable with recent advancements in behaviour-based emotion recognition in the

wild [5, 59, 77]. Since most in-vehicle emotion recognition relied on physiological sensors, facial expression, or
speech and were conducted in lab settings [88], we benchmark our results with that of other in the wild studies
based mainly on behaviours. Relying on Instagram photos, Reece and Danforth were able to detect the depression
of users at an accuracy of 70% [59]. Taylor et al. built a personalised model to classify binary states (sad/happy)
at an accuracy of 78.4%; similarly, Buda et al. [5] predicted lower or upper outliers of users’ happiness and
achieved and macro F1-score at 64.7% and 59.2% 9 for user-dependent and user-independent model, respectively.
In particular, [77] excluded neutral days from both train and test, and [5] focused on classification of anomaly. In
comparison, we did not exclude any data in our approach, meaning that our method shows more robustness in
predicting ambiguous emotion responses that are close to the boundary between low and high classes. As such,
our competitive performance against the state-of-the-art approaches demonstrate that our in-vehicle solution
can serve as a good complement of prevalent behaviour-based emotion recognition approaches.

Our proposed non-intrusive system to recognise driver emotions allows for and encourages new opportunities
to exploit the available data streams to infer the emotional state of the driver. Because our data were collected on
public roads in empirical driving scenarios, a challenging environment was provided compared with laboratory
conditions, and so our results are likely to be more reliable.

6.2 Emotion Recognition with Respect to Privacy Protection
We evaluated our method in terms of protecting user privacy. CAN-bus data and the surrounding visual informa-
tion are much less sensitive to intrusion or leaking than physiological and facial data. For example, physiological
data can reveal sensitive health conditions. Capturing surrounding traffics via a camera can violate privacy laws
in certain regions (e.g., the General Data Protection Regulation (GDPR) in Europe [22]). In such regions, the
proposed CAN-only model can be applied as it achieves similar performance to that of the Video-only and fusion
models while better ensuring preserve user privacy. Nevertheless, our models require only locations and distances
(we used object size as a proxy) of the surrounding traffic participants. Surrounding object information can be
retrieved from on-board radar systems [75]. Acquiring such information does not capture sensitive information
(e.g., license plates, facial images or explicit activities) from traffic participants. Hence, our approach adheres to
the idea of privacy by design by minimising the data collection. It is compliant with current privacy-related laws
and should be more acceptable to customers than prevalent technologies, such as driver-monitoring cameras

9Both macro F1-scores are computed from their reported confusion matrix and data distribution.
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or health-sensor-based approaches. Thus, the novelty of our non-invasive emotion recognition algorithms is in
their potential for scalability and privacy-preserving capabilities.

6.3 Flexible Deployment
The proposed CAN-only, Video-only and Fusion models delivered similar performances, as described in Section 5.1.
We thus believe that the proposed methods have great flexibility in terms of deployment depending on the
available sensor modalities:

• The CAN-only model can be deployed in regions in which vehicular front-view videos are disallowed (by
law), or in the vehicles that are not equipped with the requisite sensing systems to capture traffic context
information. Furthermore, the CAN-only model is robust against adversarial attacks and can be used in
security sensitive scenarios.

• The Video-only model is more flexible than CAN-only model. On the one hand, in the regions (e.g., China,
India and USA) where the front-view video are permitted, the Video-only model can be used in combination
with driving recorders or smartphones mounted on the vehicle dashboard. Such a setting allows for the
recognition of driver emotion without access to CAN data, and hence further increases the ubiquity. On the
other hand, the Video-only model is a natural fit in the context of increasingly intelligent vehicles. Vehicles
in the future will have better sensing capability of surrounding traffic. The proposed video-only model relies
exactly on the location and the distance of surrounding traffic participants. Such information can be reused
in more and more intelligent vehicles.

• The fusion model further improved emotion recognition performance compared with single modality
models. It can be applied to achieve the best user experience if the relevant conditions allow for it.

Our comparison should inform future research in the area on the suitability of these three models. Hence, we
believe that our findings actually revealed high flexibility of the proposed method in the deployment.

6.4 Limitations
Despite our best efforts, this study has several limitations. First, our data collection took place in real-world traffic,
a complex environment. To ensure a competitive baseline, we relied on heart rate variability measures obtained
by FirstBeat - a recording device for cardiovascular activity. To record the data, electrodes needed to be attached
to the chests of the subjects. Such a procedure is cumbersome, and requires additional training for the subject to
correctly attach the electrodes. Moreover, our prototypical setup, its cost, and the cumbersome physiological
sensors forced us to limit our sample size to nine drivers. These limitations should be, however, evaluated under
the consideration that ours is the first study to explore drivers’ emotions inference in a longitudinal setup (over
four months). Our comprehensive sensor set that was used to collect information on driver behaviour and the
environment of the car covered a wide range of influential factors.
Furthermore, we did not explicitly analyse the relation between emotion and specific driving manoeuvres or

traffic events. Such a relation was modelled implicitly by using a neural network. Identifying driving manoeuvres
or traffic events remains challenging. Even the state-of-the-art methods can identify only simple manoeuvres,
such as lane changing or turning right while accelerating [38, 56, 83]. Future research should address this issue
and a more explainable model is promised to better benefit both academia and industries.
Lastly, the LOSO model does not achieve as good performance as personalised model. Generalising from a

user-dependent to a user-independent model remains a challenging topic in affective computing community.
However, our results show that a generilisability across users is possible, especially for the emotions such as
anger, sadness, and valence that are very relevant to driving safety. Further research is needed to investigate the
extent to which such generalisation is achievable.
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7 CONCLUSION
In-vehicle emotion recognition can enable applications of intelligent automobiles to improve comfort, well-being,
and safety by adapting the car to the needs of the drivers. Current applications rely on physiological, facial, and
speech-based data for emotion recognition. However, physiological sensors are cumbersome to wear during daily
commute, and incur additional costs. Moreover, recording facial expressions and speech may raise privacy-related
concerns. In this paper, we leverage recent advancements in generic emotion recognition through user behaviours,
and used the idea for in-vehicle emotion inference. We relied solely on data streams of today’s cars (i.e., CAN-bus
and front-view camera data): a strong advantage that allows for a scalable and privacy-preserving implementation
in cars. We collected four months of CAN-bus front-view video data from nine users under naturalistic driving
settings on public roads. The in-situ emotions of the drivers’ faces were recorded by a monitoring camera and the
relevant videos were annotated by using a the state-of-the-art facial expression recognition software - Affectiva.
Our results can be summarised as follows: First, we evaluated our models based on intra-subject and LOSO

evaluations, and compared the performance of different sensor modalities. This evaluation revealed that a fusion
model that combined CAN-bus data and front-view video data achieved the best results among our models.
A single modality model yielded similar performance scores to those of a fusion model, which allows for the
flexible deployment of the proposed model when certain sensor modalities are unavailable. Second, we compared
the results of the proposed model with an HRV baseline. This evaluation revealed that our models can achieve
comparable performance as the HRV baseline. Therefore, inferring driver emotions within a vehicle based on
driving behaviour and context by using data from CAN-bus and video segments yields better ubiquity than
physiological sensor-based approaches.
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A APPENDIX

Table 6. All signals of CAN data.

Signal ID Description Signal ID Description

1 Accelerator pedal position 26 Left turn indicator
2 Belt buckle indicator 1 27 Longitudinal acceleration
3 Belt buckle indicator 2 28 Motor rotational speed
4 Belt buckle indicator 3 29 Odometer
5 Belt buckle indicator 4 30 Parking light indicator
6 Belt buckle indicator 5 31 Rear fog light
7 Brake indicator 32 Right turn indicator
8 Brake pressure 33 Steering wheel angle
9 Clutch switch 34 Steering wheel direction
10 Daytime running lamp 35 Steering wheel velocity
11 Dimmed headlights indicator 36 Steering wheel velocity direction
12 Electronic stability control 37 Tank level percent
13 External temperature sensor 1 38 Temperature sensor
14 External temperature sensor 2 39 Time
15 Flasher 40 Wheel direction (back left)
16 Fog light indicator 41 Wheel direction (back right)
17 Front wiper 42 Wheel direction (front left)
18 Gear position 43 Wheel direction (front right)
19 GPS altitude coordinate 44 Wheel speed (back left)
20 GPS latitude coordinate 45 Wheel speed (back right)
21 GPS longitude coordinate 46 Wheel speed (front left)
22 High beam 47 Wheel speed (front right)
23 High beam indicator 48 Yaw rate
24 Humidity 49 Yaw rate direction
25 Lateral acceleration
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Table 7. HRV features of the baseline method. [52]

Feature Index Description

Time Domain Measures

1 the mean value (RR mean: R refers to the peak of the electrocardiography wave; RR is
the interval between successive Rs)

2 the standard deviation (RR std)
3 the standard deviation of Normal-to-Normal (NN) intervals (SDNN)
4 the square root of the mean of the sum of the squares of differences between subsequent

NN intervals (RMSSD)
5 the number of successive differences of intervals which differ by more than 50 ms,

expressed as a percentage of the total number of heartbeats analyzed (pNN50)
6 the integral of the probability density distribution divided by the maximum of the proba-

bility density distribution (HRV tiangular index)
7 the triangular interpolation of NN interval histogram (TINN)

Frequency Domain Measures

8-10 the power calculated within the very low frequency (VLF), low frequency (LF), and high
frequency (HF) bands

11-13 the frequencies containing maximum magnitude (VLF peak, LF peak, and HF peak).
14-16 the power expressed as percentage of the total power (VLF power %, LF power %, and HF

power %)
17-18 the power normalized to the sum of the LF and HF power (LF power nu and HF power

nu)
19 the LF/HF power ratio

Nonlinear HRV Measures

20 Approximate Entropy
21-22 Detrended Fluctuation Analysis: short-term fluctuations (𝛼1) and long-term flunctuations

(𝛼2)
Lagged Poincaré Plots: SD1, SD2, SD12, S, SDRR (details below)

23 SD1: the standard deviation related to the points that are perpendicular to the line-of-
identity

24 SD2: the standard deviation that describes the long-term dynamics and measures the
dispersion of the points along the identity line.

25 SD12 (SD1/SD2): the ratio between SD1 and SD2.
26 S (𝜋SD1SD2): the area of an imaginary ellipse with axes SD1 and SD2
27 SDRR: an approximate relation indicating the variance of the whole HRV series
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Table 8. Intra-subject and LOSO cross-validation: comparison between the baseline and our driving behaviour- and context-
based inference.

Personalised Model LOSO Model
F1-score (%) CAN Video Fusion baseline CAN Video Fusion baseline

anger 63.1 63.4 61.5 54.0 51.4 52.9 50.8 43.6
disgust 64.4 66.1 62.1 55.7 52.4 50.8 49.5 44.3
fear 62.0 59.5 56.8 55.2 54.7 54.0 50.6 53.3
joy 62.1 63.5 64.5 61.4 56.6 54.8 53.3 54.5

neutral 64.3 64.5 64.0 58.3 54.6 51.6 52.4 44.9
sadness 63.7 64.3 62.9 54.1 48.0 49.8 47.4 44.4
surprise 66.4 64.7 66.1 53.9 54.3 50.7 49.3 49.2
valence 66.7 61.0 62.4 56.5 47.9 50.2 46.4 48.7

average 64.1 63.4 62.5 56.1 52.5 51.8 50.0 47.9
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Fig. 15. Cumulative distribution of p-values of the selected features according to the source of the signal.
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Fig. 16. Confusion matrix for CAN-only modality.
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Fig. 17. Confusion matrix for Video-only modality.
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Table 9. Results of precision for low class: Intra-subject and LOSO cross-validation: comparison between the driving behaviour-
and context-based inference models as well as the fusion of both modalities.

low class Personalised Model LOSO Model
precision (%) CAN Video Fusion CAN Video Fusion

anger 71.6 73.5 76.6 64.1 64.3 66.7
disgust 71.4 73.7 74.1 64.7 65.3 65.0
fear 67.9 68.7 69.0 45.9 47.2 45.6
joy 68.7 67.4 71.0 60.2 58.0 61.1

neutral 64.0 65.5 68.5 53.9 53.2 58.6
sadness 71.4 73.7 74.0 65.6 64.8 66.8
surprise 70.2 68.6 70.2 49.4 47.6 47.9
valence 65.4 65.2 69.1 52.1 51.0 57.2

average 68.8 69.5 71.6 57.0 56.4 58.6

Table 10. Results of precision for high class: Intra-subject and LOSO cross-validation: comparison between the driving
behaviour- and context-based inference models as well as the fusion of both modalities.

high class Personalised Model LOSO Model
precision (%) CAN Video Fusion CAN Video Fusion

anger 67.5 68.7 68.1 58.3 56.8 58.8
disgust 67.5 69.5 70.7 58.8 57.8 62.0
fear 70.3 69.7 71.9 50.5 51.1 52.3
joy 66.2 67 65.8 48.5 51.5 48.8

neutral 72.6 73.4 73.0 66.3 63.7 64.9
sadness 64.3 66.4 67.0 55.1 55.5 58.0
surprise 68.8 70.2 71.6 49.1 51.4 51.8
valence 71.3 76.1 73.0 63.9 65.8 65.3

average 68.6 70.1 70.1 56.3 56.7 57.7
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Table 11. Results of recall for low class: Intra-subject and LOSO cross-validation: comparison between the driving behaviour-
and context-based inference models as well as the fusion of both modalities.

low class Personalised Model LOSO Model
recall (%) CAN Video Fusion CAN Video Fusion

anger 66.4 68.3 69.2 60.0 59.7 61.1
disgust 66.6 68.9 69.8 60.8 61.0 62.3
fear 69.5 70.3 71.2 49.4 52.3 51.3
joy 67.3 65.8 67.7 58.8 56.8 57.8

neutral 71.6 72.9 73.5 70.8 68.8 67.7
sadness 66.4 67.9 69.2 60.8 60.0 62.2
surprise 69.8 70.2 71.2 50.2 51.5 51.4
valence 72.3 75.3 74.7 73.2 71.9 70.3

average 68.7 70.0 70.8 60.5 60.3 60.5

Table 12. Results of recall for high class: Intra-subject and LOSO cross-validation: comparison between the driving behaviour-
and context-based inference models as well as the fusion of both modalities.

high class Personalised Model LOSO Model
recall (%) CAN Video Fusion CAN Video Fusion

anger 74.2 74.7 76.2 70.5 69.9 67.8
disgust 74.6 75.5 77.0 71.9 72.5 69.2
fear 68.7 68.1 69.9 46.5 47.1 46.3
joy 69.1 69.9 70.1 75.6 69.6 71.4

neutral 65.7 67.3 68.9 59.3 58.9 60.8
sadness 70.8 73.3 72.6 70.1 68.4 68.0
surprise 69.2 69.4 70.6 48.5 48.5 48.3
valence 64.8 66.4 68.0 56.7 56.3 58.5

average 69.6 70.6 71.7 62.4 61.4 61.3
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