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Despite regulations and policies to improve city-level air quality in the long run, there lack precise control measures to
protect critical urban spots from heavy air pollution. In this work, we propose iSpray, the first-of-its-kind data analytics
engine for fine-grained 𝑃𝑀2.5 and 𝑃𝑀10 control at key urban areas via cost-effective water spraying. iSpray combines domain
knowledge with machine learning to profile and model how water spraying affects 𝑃𝑀2.5 and 𝑃𝑀10 concentrations in time
and space. It also utilizes predictions of pollution propagation paths to schedule a minimal number of sprayers to keep the
pollution concentrations at key spots under control. In-field evaluations show that compared with scheduling based on
real-time pollution concentrations, iSpray reduces the total sprayer switch-on time by 32%, equivalent to 1, 782𝑚3 water and
18, 262 𝑘𝑊ℎ electricity in our deployment, while decreasing the days of poor air quality at key spots by up to 16%.
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1 INTRODUCTION
Urban air pollution threatens the health of residents. Epidemiological studies find a positive correlation between
exposure to high concentrations of small particulate matter (with diameter less than 10 and 2.5 micrometer, i.e.,
𝑃𝑀10 and 𝑃𝑀2.5) and cardiovascular or respiratory diseases [3, 26]. Yet 91% of the world’s population lives in
areas where air quality levels exceed WHO limits [39]. In response, many cities have deployed large-scale sensor
networks [9, 16, 24] to monitor urban air pollution [9, 40], generate fine-grained air quality maps [5, 16, 45], and
forecast heavily polluted areas [10, 46] for citizens to adjust their travel plans accordingly.

In addition to passive monitoring of urban air pollution, active control strategies are also crucial. Governments
and authorities have launched various policies and regulations to reduce emissions from factories, transport, and
household to improve the overall (e.g., city-level, annual average) air quality [4, 29]. However, there lacks measures
for fine-grained (e.g., specific districts, hourly average) air pollution control. Such measures are complementary
to the city-level policies and regulations and aim to offer precise protection to critical points of interest (POIs)
such as residential areas, schools, hospitals, etc. within the city.
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In this paper, we explore water spraying for precise 𝑃𝑀2.5 and 𝑃𝑀10 control at key urban POIs. Water spraying
proves effective for dust control at construction and mining sites [20, 21, 36] and has recently been applied for
PM reduction in urban areas [42]. The principle is to atomize water into micro droplets to fall in combination
with ambient dusts [30]. The fog produced by commodity sprayers can spread 10 to 100 meters and our field
studies show water spraying reduces 𝑃𝑀2.5 and 𝑃𝑀10 concentrations by 20% to 30% (up to 13 𝜇𝑔/𝑚3 for 𝑃𝑀2.5 and
19 𝜇𝑔/𝑚3 for 𝑃𝑀10), in various weather conditions (see Sec. 4.1), which is considered significant improvements
in air pollution control [15]. Note that a reduction of 10𝜇𝑔/𝑚3 in 𝑃𝑀2.5 and 𝑃𝑀10 concentrations is valuable
for the health of residents, especially on human respiratory system [41]. Clinical research indicated that the
average life span was extended by 0.35 years for every 10𝜇𝑔/𝑚3 decrease of 𝑃𝑀2.5 [11], whereas the mortality of
cardiopulmonary diseases and lung cancer increased by 6% and 8%, respectively, for every 10𝜇𝑔/𝑚3 increase of
𝑃𝑀2.5 [38]. It is also shown that for each increase of 𝑃𝑀10 by 10𝜇𝑔/𝑚3, the overall morbidity increased by 0.38%
[19], and the mortality related to respiratory diseases increased by 0.58% [1]. Therefore, water spraying holds
potential for effective urban 𝑃𝑀2.5 and 𝑃𝑀10 control at fine spatiotemporal granularity, and provides valuable
benefits for human health, especially when the pollution reduction is over 10 𝜇𝑔/𝑚3.
Designing an urban water spraying system, however, faces multiple technical challenges. (i) There lacks

quantitative models on how water spraying reduces 𝑃𝑀2.5 and 𝑃𝑀10 concentrations in the urban outdoor space.
Existing models are primarily derived for indoor environments with controlled ventilation [12, 42]. They are
unfit for profiling pollution reduction outdoors due to the complex aerodynamics and meteorological factors
in the open urban space. It is difficult to decide which sprayers to switch on without a quantitative pollution
reduction model. (ii) The water spraying system should be cost-effective, i.e., a minimal number of sprayers are
switched on to keep the 𝑃𝑀2.5 and 𝑃𝑀10 concentrations at the key POIs within the desired range. For example,
a single sprayer in our deployment consumes 0.6𝑚3 water and 5 𝑘𝑊ℎ electricity per hour, which adds up to
792𝑚3 water and 6600 𝑘𝑊ℎ electricity a day if all the sprayers are operating non-stop. We empirically show that
a strategically selected sprayer subset would suffice to ensure the air quality level at given POIs (see Sec. 6.2.3).
To this end, we propose iSpray, a data analytics engine for fine-grained air pollution control at key urban

POIs via cost-effective water spraying. We exploit both domain knowledge and data-driven approaches to
characterize and model the spraying-induced pollution reduction in time and space. The hybrid approach enables
accurate pollution reduction modeling even with limited spraying data for training. We further propose a sprayer
scheduling scheme based on the predictions of pollution propagation paths. By prioritizing water spraying along
the pollution propagation paths, we avoid unnecessary spraying that only marginally suppresses the pollution at
the targeting POIs. The main contributions of this paper are summarized as follows.

• To the best of our knowledge, we are the first to characterize the effect of commodity water sprayers on
𝑃𝑀2.5 and 𝑃𝑀10 reduction in outdoor urban areas. Field studies show that the spraying-induced pollutant
reduction at the sprayer’s location is non-linearly weather-dependent, which can be modeled via a neural
network, and the model generalizes across sprayer locations.

• We design an explainable model to integrate water spraying into urban air quality map generation. We
exploit domain knowledge to isolate the impact of spraying on the pollutant’s spatial distribution for easy
sprayer scheduling and accurate map generation with limited spraying data. Evaluations show that our
approach outperforms pure data-driven map generation by 7.9 to 9.3 in mean absolute error (MAE).

• We propose a propagation-aware sprayer scheduling algorithm for cost-effective air pollution control
at key urban spots. Compared with the baseline strategy that switches on sprayers according to the
current pollutant concentration, our scheduling scheme reduces the total sprayer switch-on time by 32%,
or equivalently 1, 782𝑚3 water and 18, 262 𝑘𝑊ℎ electricity for our deployment, while decreasing the days
of poor 𝑃𝑀2.5 and 𝑃𝑀10 air quality at key POIs by 13% and 16%.
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Fig. 1. iSpray overview: functional modules of iSpray (left); workflow of iSpray (right).

In the rest of this paper, we provide an overview of iSpray in Sec. 2, explain the deployment and data collection
in Sec. 3, and elaborate on each module in Sec. 4, Sec. 5 and Sec. 6. We present the overall evaluations of iSpray in
Sec. 7, review related work in Sec. 8 and conclude in Sec. 9.

2 ISPRAY OVERVIEW
iSpray is a data analytics engine for urban air pollution control with commodity sprayer hardware. It offers (i)
pollution reduction modeling at single sprayer locations, (ii) pollution map generation, and (iii) cost-effective
sprayer scheduling. Fig. 1 illustrates the functional modules in iSpray. Table 1 summarizes the major notations
that will be used throughout this paper.

The pollution reduction modeling module (see Sec. 4) characterizes and quantifies the impact of water spraying
on 𝑃𝑀2.5 and 𝑃𝑀10 concentrations at the locations where the sprayers are installed. It is the foundation to
integrate the impact of water spraying into air quality map generation (i.e., spatial distribution of pollutant
concentration). Existing pollution reduction models for water spraying either halt at simulations [42] or are
designed for indoor scenarios with controlled ventilation [20, 21]. They are unfit for modeling pollution reduction
outdoors because they fail to account for the complex aerodynamics and meteorological factors in the open urban
space. iSpray takes a data-driven approach to model how water spraying reduces outdoor air pollution under
various environmental conditions. Through in-field studies, iSpray learns a neural network that quantifies the
reduction in 𝑃𝑀2.5 or 𝑃𝑀10 concentration at single sprayer locations given specific spraying time, meteorological
conditions, and other environmental factors.

The pollution map generation module (see Sec. 5) models how water spraying affects the spatial distribution of
𝑃𝑀2.5 and 𝑃𝑀10 concentrations. Due to limited spraying data for effective training, we model the spatial pollution
reduction with both domain knowledge and data-driven approaches. Instead of feeding all data into a machine
learning model as previous studies [5, 8, 16], we exploit a Gaussian plume model [2, 43] to simulate pollution
reduction in space by regarding the sprayer as a sink that absorbs pollution. We also propose a parameter learning
strategy to estimate the inaccessible parameters in the Gaussian plume model from historical data. Evaluations
show our hybrid modeling method outperforms pure data-driven schemes in modeling spraying-induced pollution
reduction maps (see Sec. 5.4.2).
The sprayer scheduling module (see Sec. 6) aims to keep the air pollution at crucial POIs under predefined

thresholds by switching on aminimal set of sprayers. Our measurements show that the spraying-induced pollution
reduction is non-uniform across space (e.g., due to wind direction) and is non-linear to multiple environmental
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Table 1. Summary of major notations.

Notation Explanation

𝐶 (𝑔) ground truth pollution concentration in grid g
𝐶 (𝑔) estimated pollution concentration in grid g
𝐶𝑑 (𝑔) pollution concentration in grid g due to dispersion
𝑅 (𝑔) overall pollution reduction in grid 𝑔 due to water spraying
𝑑𝑐𝑟𝑜𝑠𝑠 (.) crosswind distance between two grids
𝑑𝑑𝑜𝑤𝑛 (.) downwind distance between two grids
𝑔 grid in 2-dimensional space
𝑖 index for POI
𝑘 index for sprayer
𝐿𝑖 location of POI
m mean function of Gaussian process
v covariance function of Gaussian process
𝐾 total number of sprayers in the region of interest
𝑜 operating status of a sprayer, which can be on or off
𝑟 (𝑔 |𝑠𝑘 ) pollutant reduction in grid 𝑔 with sprayer 𝑠𝑘 switched on
𝑠𝑘 =< 𝑔𝑘 , 𝑜𝑘 > sprayer 𝑠𝑘 in grid 𝑔𝑘 with operating status 𝑜𝑘
𝑡 discrete time index
Δ𝑡 time duration, set to 1 to 6 hours for map generation and sprayer scheduling
𝜙 (.) learned function for Gaussian plume dispersion parameter 𝜎
𝑄𝑎𝑖𝑟 pollution emission rate
𝑄𝑠𝑘

(Δ𝑡 ) accumulative pollution reduction in grid of sprayer 𝑠𝑘
𝑄𝑠𝑘

abbreviation for𝑄𝑠𝑘
(Δ𝑡 ) when Δ𝑡 is set to 1 hour

𝜎 Gaussian plume dispersion parameter, which is a function of downwind distance and other features
�̄� average horizontal wind speed

factors (e.g., weather). Therefore, the amount of pollution reduction at a given POI varies if a different sprayer
is switched on. iSpray proposes a propagation-path-based heuristic to rank the importance of sprayers to the
pollutant reduction at each POI, so as to turn on a minimal number of sprayers without exceeding the targeting
pollution threshold at crucial POIs.

3 HARDWARE DEPLOYMENT AND DATA COLLECTION
iSpray is designed as a software solution that works with commodity sprayer hardware. This section presents the
sprayer hardware deployment and data collection in this study.

3.1 Sprayer Hardware and Deployment
Water spraying is widely used for dust control in the construction and mining industries [20, 21, 36] and has also
been applied for ambient particulate matter reduction in urban areas [42]. The principle of water spraying for
dust suppression is to atomize water into droplets of size comparable to fine particulate matters e.g., 1𝜇𝑚 to 8𝜇𝑚.
These droplets can stay suspended in the air for a long time and will then fall in combination with the ambient
dusts and particulate matters [30].
A commodity sprayer exploits an electric motor to press water through high-pressure resistant pipes and

atomizing nozzles to produce micro droplets. A single nozzle can produce fog lengths of 3 to 5 meters, which can
spread 10 to 30 meters in windless conditions and 100 meters in windy conditions. A typical sprayer consists
of an atomization system, a water tank, a multi-nozzle sprinkler and other control modules. The atomization
system and water tank are normally installed on the ground (see Fig. 2-a and Fig. 2-b) while the sprinkler is
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（a） （b） （c）

Fig. 2. Ground hardware components of a commodity water sprayer: (a) exterior of the atomization system and the water
tank; (b) internal design of the atomization system. (c) Example sprayer deployment at critical urban POIs: School, Hospital,
Road and Factory. Note that only the multi-nozzle sprinkler of the sprayers are shown.

usually installed high above the ground e.g., at the edge of rooftops, for better dust suppression performance (see
Fig. 2-c). iSpray is designed as part of the control module to intelligently switch on and off the sprayer.
Since we aim at cost-effective air pollution control at critical urban POIs, we deploy sprayers at various

pollution-sensitive POIs such as schools and hospitals. We also deploy sprayers at locations of representative
𝑃𝑀2.5 and 𝑃𝑀10 sources such as factories and roadsides to profile the impact of water spraying on air pollution
reduction. 55 sprayers were installed at diverse urban POIs covering an area of 18 km × 24 km in a metropolis in
China. A portable air quality sensing box is also installed in the close vicinity of each sprayer to collect real-time
𝑃𝑀2.5 and 𝑃𝑀10 concentrations as well as weather measurements including air temperature, relative humidity,
air pressure, wind speed and wind direction. All the data are transmitted via NB-IoT to a central server.
We partition our sprayer deployment into three groups: Research Area, Target Area and Control Area (see

Fig. 3-c). The principles of area selection are as follows.

• The Research Area covers sprayers with co-located air quality sensing boxes. That is, each site within the
Research Area consists of a sprayer and an air quality sensing box as shown in Fig. 3-b. There are 55 such
pairs of sprayers and air quality sensing boxes in the Research Area. This area is used for modeling and
testing single-location pollution reduction (Sec. 4) as well as pollution reduction maps (Sec. 5).

• The Target Area is a sub-area of the Research Area where we would like to control the 𝑃𝑀2.5 and 𝑃𝑀10
levels. It covers critical POIs as those shown in Fig. 2-(c). We randomly pick two Target Areas that contain
diverse POIs. Target Area 1 contains 7 pairs of sprayers and sensing boxes and Target Area 2 contains 8. We
mainly use Target Area 1 to test the sprayer scheduling performance of iSpray in the evaluations (Sec. 7)
and the slightly smaller Target Area 2 to assess the generalization of iSpray (Sec. 7.4).

• The Control Areas are used as control groups against the Target Areas to evaluate the effectiveness of water
spraying. Each site in the Control Areas only has an air quality sensing box without a sprayer. We select
Control Areas with the following criteria. First, the 𝑃𝑀2.5 and 𝑃𝑀10 distributions of the Control Area should
be similar to those in the Target Areas when the sprayers are closed. The similarity is measured by the
Kullback-Leibler (KL) divergence as in [6]. Second, the Control Areas are located at different orientations
relative to the Target Areas. In total, three Control Areas are chosen, with 5,4 and 5 air quality boxes,
respectively. We use the average 𝑃𝑀2.5 and 𝑃𝑀10 concentrations of the three Control Areas as the control
group for the Target Areas.
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Fig. 3. Summary of data collection campaigns. (a) Sprayers deployed at three locations. 𝐿1 is factory, 𝐿2 is roadside and 𝐿3 is
residential area. At each location, there are two closely deployed sprayers (also with air quality sensing boxes) 𝐴 and 𝐵. We
use these sprayers to analyze and model spraying-induced pollution reduction at single locations. (c) Overall deployment.
Each site within the Research Area consists of a sprayer and a co-located air quality sensing box as shown in (b). Each site
in the Control Area only has an air quality sensing box. The Target Areas are sub-areas of the Research Area for pollution
control. (d) Time split of data campaigns.

3.2 Data Collection
We collected measurements from the 55 sprayers and their co-located air quality sensing boxes in Research Area,
including data from 7 air quality sensing boxes from Target Area 1, and 8 from Target Area 2. Meanwhile, data
from the 14 (5 + 4 + 5) air quality sensing boxes data in the three Control Areas are also collected. The dataset
contains the following data collected spanning from September 1st, 2019 to November 1st, 2021.

• Air quality and local weather data: We sample real-time air quality and weather-related readings from
the air quality sensing boxes at every minute. The air quality readings include 𝑃𝑀2.5, and 𝑃𝑀10. The local
weather information includes Air Temperature (𝐴𝑇 ), Relative Humidity (𝑅𝐻 ), Air Pressure (𝐴𝑃 ), Wind Speed
(𝑊𝑆), and Wind Direction (𝑊𝐷) measured at the location of the sensing box. Prior research [5, 9, 27, 45]
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showed that these factors affect the 𝑃𝑀2.5 and 𝑃𝑀10 concentration. The values of all the weather variables
are normalized to the range of [0, 1].

• Sprayer data: We record sprayer data including sprayer operating status, which is either on or off, as well
as the usage of water and electricity. The sampling rate is also every minute.

• Forecast weather data: In addition to the local weather data sampled at each air quality sensing box, we
also collect public weather forecast data 1 for the entire region of interest. These weather records contain
1𝑘𝑚 × 1𝑘𝑚 grid-level air temperature, relative humidity, air pressure, wind speed, and wind direction for
every hour. These data will be used in the air quality map prediction module (see Sec. 5.1).

Fig. 3-(d) summarizes our data collection campaigns and their usage.
• Data collection for single-location pollution reduction. We use data correspond to the three locations
𝐿1, 𝐿2, and 𝐿3 in Fig. 3-(a) for characterizing and modeling air pollution at single locations (see Sec. 4). The
selection of these three locations is deferred to Sec. 4.1.1. Its data collection period is from September 1st,
2019 to April 30th, 2020. Specifically, two two-week pilot studies, from September 1st, 2019 to September
15th, 2019, and from September 16th, 2019 to September 30th, 2019, respectively, are adopted to analyze
the spraying-induced air pollution reduction at single locations (see Sec. 4.1). Afterwards, we use the data
collected from October 2019, as well as from November 2019 (Autumn dataset) and April 2020 (Spring
dataset), to train and test our single-location air pollution reduction model (see Sec. 4.2.2).

• Data collection for pollution reduction map generation. We use data collected from the Research Area
for training and testing air pollution map generation (Sec. 5). Specifically, we use the data from September
1st, 2019 to April 30th, 2020 for training the pollution map prediction without spraying (Sec. 5.1) and data
in March and August 2021 for testing (Sec. 5.4.1). Similarly, we use the data from May 1st, 2020 to August
31st, 2020 for training the pollution reduction map (Sec. 5.2), and data in April, September, and October
2021 for testing (Sec. 5.4.2).

• Data collection for sprayer scheduling. Note that the scheduling algorithm of iSpray does not involve
training other than the above models for pollution reduction (see Sec. 6). Therefore, we only need datasets
for testing. Specifically, we use the data collected (i) in October 2020 from Target Area 1 to compare different
scheduling strategies (see Sec. 7.2); (ii) in April 2021 and September 2021 from Target Area 1 to test the
performance of iSpray scheduling (see Sec. 7.3); and (iii) in October 2021 from Target Area 2 to test the
generalization of iSpray scheduling (see Sec. 7.4). Meanwhile, we collect the data from the Control Areas for
the corresponding months as the control group, i.e., without any water spraying.

Note that both 𝑃𝑀2.5 and 𝑃𝑀10 are particulate matters and the only difference lies in size of the particle. Also
𝑃𝑀2.5 is more critical to the human health [41]. Therefore, in the rest of this paper, we will mainly use 𝑃𝑀2.5 to
illustrate our technical details, but provide the evaluations for 𝑃𝑀10 mainly in Sec. 7.

4 CHARACTERIZING WATER SPRAYING ON SINGLE-SPOT AIR POLLUTION REDUCTION
In this section, we conduct preliminary studies to answer the following two questions: (i) Does water spraying
reduce air pollution at single POIs? (ii) Can we model the amount of air pollution reduction at a single POI as a
function of sprayer time and other environmental factors? We answer these questions with data collected at the
three locations in Fig. 3-a.

4.1 Water Spraying Suppresses Air Pollution at Single Locations
We first investigate whether water spraying notably decreases air pollution concentrations in the outdoor open
air via two field studies.

1https://www.ecmwf.int/en/forecasts/datasets visited 2021-11-01
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Fig. 4. Impact of water spraying on hourly averaged 𝑃𝑀2.5 concentration measured at two closely deployed sprayers (𝐴 and
𝐵) at 𝐿1. (a) 𝑃𝑀2.5 concentrations measured at 𝐴 and 𝐵 over time. Both 𝐴 and 𝐵 were switched off in the first week and 𝐵
was switched on in the second week (portions with green background). (b) Distributions of local weather data in the first
and the second week.

Table 2. Results of t-tests for weather conditions.

(a) p-values for weather conditions
between the first and second week.

AT AP RH WD WS

𝐿1 0.32 0.44 0.66 0.69 0.79
𝐿2 0.33 0.42 0.65 0.71 0.77
𝐿3 0.30 0.42 0.66 0.72 0.76

(b) p-values for weather conditions
between sprayer A and B.

AT AP RH WD WS

𝐿1 0.90 0.90 0.89 0.92 0.93
𝐿2 0.89 0.91 0.90 0.92 0.93
𝐿3 0.92 0.90 0.89 0.93 0.94

4.1.1 Pollution Reduction over Time. We randomly choose six sprayers (with co-located air quality sensing boxes)
from the Research Area in Fig. 3-(c) for a two-week field study (from September 1st, 2019 to September 15th, 2019).
Specifically, sprayers from three locations are selected, where there are two closely deployed (< 100 meters)
sprayers at these three locations (see Fig. 3-(a)). The sprayers labeled as 𝐴 at each location are used as the control
group. That is, they are kept switch off during the entire two weeks. The sprayers labeled as 𝐵 at each location
are switched off in the first week and switched on in the second week. We use the 𝑃𝑀2.5 and 𝑃𝑀10 concentrations
as well as the local weather data (i.e., air temperature 𝐴𝑇 , relative humidity 𝑅𝐻 , air pressure 𝐴𝑃 , wind speed𝑊𝑆 ,
wind direction𝑊𝐷) for this study.

Fig. 4-(a) plots the 𝑃𝑀2.5 concentrations measured at sprayer 𝐴 and 𝐵 at location 𝐿1 (factory) in these two
weeks. We average the minute-resolution 𝑃𝑀2.5 values into hourly resolution to highlight the general trend over
two weeks. In the first week, where both sprayers were switched off, the mean absolute difference in the 𝑃𝑀2.5
readings of sprayer 𝐴 and 𝐵 is within 0.5𝜇𝑔/𝑚3. In contrast, this difference in 𝑃𝑀2.5 concentration increases
to 13.0𝜇𝑔/𝑚3 for the second week, where sprayer 𝐴 remained off while sprayer 𝐵 was switched on (portions
with green background in Fig. 4-(a)). Similar results are observed for sprayer 𝐴 and 𝐵 at location 𝐿2 and 𝐿3.
Specifically, for location 𝐿2, the mean absolute difference between sprayer 𝐴 and 𝐵 is 0.6𝜇𝑔/𝑚3 in the first week,
and 10.7𝜇𝑔/𝑚3 in the second week. For location 𝐿3, the mean absolute difference between sprayer 𝐴 and 𝐵 is
0.8𝜇𝑔/𝑚3 in the first week, and 9.5𝜇𝑔/𝑚3 in the second week. The significant change in the 𝑃𝑀2.5 measurements
at the two closely deployed sprayers indicates that water spraying notably affects the air pollution.

The difference in 𝑃𝑀2.5 concentration might be caused by notable changes in environmental conditions in the
first and the second week. For example, factors such as wind are known to affect the spatiotemporal distribution
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Table 3. Difference in hourly averaged 𝑃𝑀2.5/𝑃𝑀10 concentration of sprayer 𝐵 compared with sprayer 𝐴 in the second week.
(𝐴 → 𝐵)/𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 means the mean value changes from A to B, and the reduction percentage.

𝐿1 (Factory) 𝐿2 (Roadside) 𝐿3 (Residential)

𝑃𝑀2.5 (49.5 → 36.5)/−26.2% (45.0 → 34.3)/−23.6% (41.2 → 31.8)/−22.9%
𝑃𝑀10 (65.8 → 46.7)/−29.1% (62.1 → 46.3)/−25.4% (55.0 → 42.3)/−23.1%
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Fig. 5. Illustration of weather-dependent pollution reduction: (a) difference of 𝑃𝑀2.5 between 𝐵 and 𝐴 at location 𝐿1, where
𝑃1 to 𝑃3 are three random periods of the same duration when 𝐵 is switched on; (b)-(d): local weather data during 𝑃1-𝑃3.

of 𝑃𝑀2.5 concentrations [5, 45]. Fig. 4-(b) plots the distributions of the weather data (i.e., air temperature 𝐴𝑇 ,
relative humidity 𝑅𝐻 , wind speed𝑊𝑆 , wind direction𝑊𝐷 and air pressure 𝐴𝑃 in the first and the second week.
It is observed that the weather conditions are similar for the first and the second week. It implies that the change
in 𝑃𝑀2.5 concentrations at the two sprayers is mainly due to change in sprayer status i.e., 𝐵 was switched on in
the second week. As a more quantitative measure, we use t-test to assess the difference in weather conditions
across both weeks for 𝐿1, 𝐿2 and 𝐿3. For each weather variable measured at each location, its measurements in
the first week and the second week are used as the two independent inputs for the t-test. The hypothesis is that
two independent samples have identical average (expected) values and a p-value larger than 0.05 is explained
as a positive signal to support the hypothesis. Table 2a shows the p-values for all meteorological variables,
which range from 0.30 to 0.79. Therefore, the measurements of weather conditions from these two weeks can be
considered drawn from the same distribution, i.e., similar to each other.
Table 3 shows the difference in pollution concentrations measured at sprayer 𝐴 and 𝐵 at the three locations

in the second week. As is shown, water spraying decreases 𝑃𝑀2.5 and 𝑃𝑀10 concentrations by over 20% at
representative urban POIs, which is considered remarkable improvements in air pollution control [15].

4.1.2 Pollution Reduction at Finer Time Granularity. In this field study, the setups follow those in Sec. 4.1.1, except
that instead of keeping the sprayers 𝐵 at locations 𝐿1 to 𝐿3 switched on continuously in the second week, we
regularly switched these sprayers on and off for a random duration from 15 minutes to 24 hours. The study was
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Table 4. List of input features for single-location pollution reduction.

Category Features
Weather air temperature, air pressure, relative humidity, wind speed, wind direction
Pollution Level We defined 6 discrete PM2.5 levels [9] and use one-hot encoding to represent them
POI We selected 10 common POIs from [17] and use one-hot-encoding to represent them
Time Unit Time unit after the opening of spraying system, one unit means one quarter-hour
Date Hour-of-Day, Day-of-Week, Month-of-year, isHoliday

conducted from September 16th, 2019 to September 30th, 2019. The local weather conditions can be considered
as similar between two nearby locations (i.e., 𝐴 and 𝐵 at each location) during these two weeks. As a quantitative
measure, we conduct a t-test for all weather variables between 𝐴 and 𝐵. The p-values are between 0.89 to 0.94,
which are larger than 0.05 (see Table 2b), indicating the weather data at 𝐴 and 𝐵 are similar. Thus, the difference
of pollution concentrations between sprayer 𝐴 and 𝐵 at these locations is primarily due to spraying.
Fig. 5-(a) plots the difference of the 𝑃𝑀2.5 concentrations (averaged for every 15 minutes) between 𝐵 and 𝐴

for these 14 days. The zones colored in green are periods with sprayer 𝐵 switched on. We make the following
observations. (i) The 𝑃𝑀2.5 difference in the uncolored zones is almost zero, meaning the 𝑃𝑀2.5 concentrations at
𝐴 and 𝐵 are almost the same. This is expected because 𝐴 and 𝐵 experience similar weather conditions and there
is no air pollution reduction by water spraying during these periods. (ii) The 𝑃𝑀2.5 difference in the green zones
ranges from 5.5𝜇𝑔/𝑚3 to 62.0𝜇𝑔/𝑚3. The air pollution reduction owes to water spraying. However, the amount
of reduction varies over time. To understand the reasons for such variations, we investigate the air pollution
reduction from three random periods of the same duration (10 hours), 𝑃1 to 𝑃3 in Fig. 5-(a). Our hypothesis is that
the spraying-induced pollution reduction is weather-dependent. Fig. 5-(b) to Fig. 5-(d) show the local normalized
weather data during the three periods 𝑃1 to 𝑃3. The average 𝑃𝑀2.5 reduction in these three periods are 8.8𝜇𝑔/𝑚3,
22.9𝜇𝑔/𝑚3, and 15.4𝜇𝑔/𝑚3, which notably differ. The local weather data during these three periods also vary.
For example, the wind direction of 𝑃1, 𝑃2 and 𝑃3 differs from each other (with mean values of 0.81, 0.49 and
0.62). This indicates pollution propagates to location 𝐿1 from different locations during 𝑃1, 𝑃2 and 𝑃3, which
might partially explain the difference in spraying-induced pollution reduction. In fact, the heavy precipitation
and strong wind in 𝑃2 facilitates pollution dispersion and increases the pollution reduction rate. The analysis
implies that the varied 𝑃𝑀2.5 reduction in the same time duration at the same location attributes to the difference
in local weather conditions, as will be shown next.

4.2 Modeling Air Pollution Reduction at Single Locations
From the field studies in Sec. 4.1, water spraying reduces air pollution at single locations but the reduction varies
and is likely weather-dependent. In this subsection, we aim to quantify the accumulative pollution reduction over
time as a function of weather conditions. We prefer modeling accumulative to instant pollution reduction since the
accumulative reduction model facilitates decisions on whether to switch off a sprayer after a given period. That
is, given a time slot Δ𝑡 at sprayer 𝑠𝑘 and all the needed features, the air pollution reduction model will predict the
accumulative pollution reduction 𝑄𝑠𝑘 (Δ𝑡).

4.2.1 Neural Network Based Pollution Reduction Model. To model the accumulative pollution reduction as a
function of weather conditions, we explore both linear (multi-variant linear regression) and non-linear (neural
network) models. Specifically, we feed all the forecast weather data as input features. Additionally, we also
include (i) pollution levels features, such as 𝑃𝑀2.5 levels; (ii) POI features such as road, park, factory; (iii) time
unit features and (iv) date features such as hour of day. Previous studies [6, 16] show that these features also
benefit air pollution related modeling. Table 4 summarizes all the input features.
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Table 5. Accuracy of single-location pollution reduction models (𝜇𝑔/𝑚3).

#hours Model Autumn Spring
𝑅𝑀 → 𝐿1 𝑅𝑀 → 𝐿2 𝑅𝑀 → 𝐿3 𝑅𝑀 → 𝐿1 𝑅𝑀 → 𝐿2 𝑅𝑀 → 𝐿3

2 linear (linear regression) 20.2 25.6 19.5 25.9 24.3 29.0
non-linear (neural network) 3.2 3.4 3.9 4.6 4.1 3.5

4 linear (linear regression) 28.3 32.1 26.7 34.9 33.1 38.0
non-linear (neural network) 5.9 7.1 4.3 6.1 6.5 4.8

6 linear (linear regression) 33.2 35.6 38.1 40.3 48.8 45.6
non-linear (neural network) 6.3 7.8 5.2 6.1 8.0 9.1

0 2 4 6 8 10
Hours

−1.00

−0.75

−0.50

−0.25

0.00

A
cc

um
ul

at
iv

e
re

du
ct

io
n

(×
10

00
µ
g
/m

3 )

Ground Truth

linear (linear regression)

non-linear (neural network)

(a)

0 2 4 6 8 10
Hours

−20

−15

−10

−5

0

A
cc

um
ul

at
iv

e
re

du
ct

io
n

(×
10

00
µ
g
/m

3 )

Ground Truth

linear (linear regression)

non-linear (neural network)

(b)

2 4 6 8 10
Hours

−6

−4

−2

0

A
cc

um
ul

at
iv

e
re

du
ct

io
n

(×
10

00
µ
g
/m

3 )

Ground Truth

linear (linear regression)

non-linear (neural network)

(c)

Fig. 6. Testing single-location pollution reduction models on (a) 𝑃1 (b) 𝑃2 and (c) 𝑃3 in Fig. 5-(a).

4.2.2 Comparisons of Single-Location Pollution Reduction Models. We empirically explore whether the non-linear
or the linear model is suited for single-location pollution reduction.

Setups.We collect data from 𝐿1, 𝐿2, and 𝐿3 during October 2019 for training, and November 2019 and April 2020
for testing. During these periods, the sprayers were set to be switched on when the 𝑃𝑀2.5 concentration exceeded
35𝜇𝑔/𝑚3, the excellent air quality level defined in Sec. 7.1; and switched off when the 𝑃𝑀2.5 concentration dropped
below the threshold. We define the data from November 2019 as the Autumn dataset and the one from April 2020
as the Spring dataset. The architecture and hyperparameters of the neural network are automatically optimized
using grid-search in Sweeps2, the final structure used for MLP model is 24(𝑖𝑛𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 ) ×35(𝑓 𝑖𝑟𝑠𝑡 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 ) ×
10(𝑠𝑒𝑐𝑜𝑛𝑑 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 ) × 1(𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 ) with a dropout rate of 0.2.

Results. Table 5 shows the accuracy of single-location pollution reduction models (RM) on predicting next
2 to 6 hours reduction values using the Autumn and Spring test sets. RM is trained using the data from 𝐿1 on
Autumn dataset and used to test the performance from 𝐿1 to 𝐿3. Neural network works best for all test sets with
MAE errors ranging from 3.2 to 9.1, much less than the results from linear model (MAEs from 19.5 to 48.8). Also,
we can find that neural network generalize well in a different season (Spring) and locations (𝐿2 and 𝐿3). Those
results reveal the necessity of using neural network in modeling the single-location pollution reduction.

As a case study, we also test the above models on data collected from 𝑃1, 𝑃2, and 𝑃3 in Fig. 5-(a). As shown in
Fig. 6, the linear model fails to capture the complex relationship between the input features and the accumulative
𝑃𝑀2.5 reduction (MAE of 59.2), whereas the estimations of the neural network are highly accurate (MAE of 5.5).

2https://docs.wandb.ai/guides/sweeps
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5 SPATIAL MODELING OF WATER SPRAYING ON AIR POLLUTION
In addition to the pollution reduction at single locations, we also need to model how water spraying affects the
spatial distribution of pollutant concentration so as to schedule the sprayers for effective pollution control at
key urban POIs. Specifically, suppose a set of sprayers are switched on at time 𝑡 and operate for Δ𝑡 , we aim to
generate an air pollution reduction map to depict spraying-induced pollution reduction in space at time 𝑡 + Δ𝑡 . In
this section, we first present a scheme for air quality map prediction without water spraying (Sec. 5.1), based
on which we propose an accurate air pollution reduction map generation (Sec. 5.2) and its parameter learning
method (Sec. 5.3). Finally, we present the evaluations for air pollution reduction map generation (Sec. 5.4).

5.1 Air Quality Map Prediction Without Water Spraying
Although a new air quality map prediction model (without water spraying) is not our focus, highly accurate
predictions are important because they will be used for parameter learning of the pollution reduction model (see
Sec. 5.3) and pollution propagation path generation (see Sec. 6.2.1). In response, we adapt a state-of-the-art air
quality prediction model [22] which is built upon convolutional long-short-term-memory (convLSTM) modules
[33]. Specifically, we add two modifications to improve the prediction accuracy. (i) We feed the model with air
quality readings from a dense deployment rather than a sparse one to improve the sensor data quality. (ii) We
design a new weather encoder module to better incorporate the weather influence on air quality changes. Fig. 7
shows our air quality prediction model called Air-convLSTM. Assume that air quality map data and weather data
are both on grid-level with shape of (𝑀 × 𝑁 ), the historical length and prediction steps are equal as 𝜏 , our model
consists of the following submodules:

• Air Encoder: it takes the historical air quality map data as input with shape of (𝜏 ×𝑀 × 𝑁 ) and produces
the hidden encoding state 𝐻𝑎𝑖𝑟 with shape of (𝑀 × 𝑁 × |𝐻𝑎𝑖𝑟 |), where |𝐻𝑎𝑖𝑟 | denotes its hidden dimension.

• Weather Encoder: it inputs the gird-level weather data with shape of (𝜏 ×𝑀 × 𝑁 × 𝑁𝑤𝑒𝑎), where 𝑁𝑤𝑒𝑎 is
the weather data dimensions. We use the hidden state of each convLSTM cell as the output of this encoder
with the shape of (𝜏 ×𝑀 × 𝑁 × |𝐻𝑤𝑒𝑎 |), where |𝐻𝑤𝑒𝑎 | is the hidden dimension of the weather encoder.

• Air Decoder: it takes the air encoder results as input and produces an output with the shape of (𝜏 ×𝑀 ×
𝑁 × |𝐻𝑎𝑖𝑟_𝑑𝑒𝑐 |), where |𝐻𝑎𝑖𝑟_𝑑𝑒𝑐 | is its hidden state dimension.

• Weather Fusion: For each decoder step 𝑖, 𝑖 ∈ (1 . . . 𝜏), concatenate the hidden state of air decoder and
weather encoder and prepare the input to a fully-connected network (FCN ). The input dimension is
(𝑀 × 𝑁 × |𝐻𝑎𝑖𝑟+𝑤𝑒𝑎 |), where |𝐻𝑎𝑖𝑟+𝑤𝑒𝑎 | = |𝐻𝑎𝑖𝑟_𝑑𝑒𝑐 | + |𝐻𝑤𝑒𝑎 |. The FCN will incorporate the weather
influence on air quality changes and produce the adapted values with shape of (𝑀 × 𝑁 ) at each decoding
step. The overall dimension of prediction map is (𝜏 ×𝑀 × 𝑁 ).

5.2 Building Air Pollution Reduction Map with Domain Knowledge
Following the conventions in the air pollution map generation literature [8, 16], we discretize the entire 2-
dimensional region of interest into grids {𝑔}. Consider 𝐾 sprayers deployed in the entire region where a set of
sprayers are switched on at time 𝑡 and will be operating for duration Δ𝑡 , our aim is to estimate the reduction
𝑅(𝑔) in pollutant concentration for every grid at time 𝑡 + Δ𝑡 . We consider a grid size of 1𝑘𝑚 × 1𝑘𝑚 and a time
resolution of 1 hour because (i) 1𝑘𝑚 × 1𝑘𝑚 is widely used in related research [5, 45, 46]; (ii) 1 hour is a common
time resolution to evaluate the air quality. We use 𝑄𝑠𝑘 to represent the accumulative pollution reduction at a
single location over Δ𝑡 hours afterwards.
One may integrate the sprayer data with emission source and weather data to directly learn an air quality

map prediction model. We separately consider pollution absorption and dispersion due to limited water spraying
data for effective training. The limited water spraying data also motivate us to model air pollution reduction
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Fig. 7. Air quality map prediction model (Air-convLSTM) used in iSpray.

maps with domain knowledge. We empirically compare the accuracy of our approach with jointly learning of
both pollution absorption and dispersion in Sec. 5.4.2.

5.2.1 Spatial Pollution Reduction of a Single Sprayer. We first model the pollution reduction 𝑟 (𝑔|𝑠𝑘 ) in grid 𝑔 due
to sprayer 𝑠𝑘 . The model is inspired by the classical Gaussian plume model to assess the impacts of emission
sources on urban air pollution [2, 43]. Specifically, the Gaussian plume model describes the pollution dispersion
𝑐 (𝑔|𝑒) in grid 𝑔 (in 2-dimension) due to an emission source 𝑒 as a Gaussian distribution in vertical directions.

𝑐 (𝑔|𝑒) = 𝑄𝑎𝑖𝑟

2𝜋𝜎�̄� exp
(
−1

2

(
𝑑𝑐𝑟𝑜𝑠𝑠 (𝑔, 𝑒)

𝜎

)2
)

(1)

where 𝑄𝑎𝑖𝑟 is the pollution emission rate, 𝑑𝑐𝑟𝑜𝑠𝑠 (𝑔, 𝑒) is the crosswind distance 3 between 𝑔 and the grid of 𝑒 . �̄� is
the average horizontal wind speed, and 𝜎 is the Gaussian plume dispersion parameter, which is a function of the
downwind distance 𝑑𝑑𝑜𝑤𝑛 (𝑔, 𝑒) between 𝑔 and the grid of 𝑒 (see footnotes for definition).

Since pollution absorption, i.e., pollution reduction due to water spraying in our case, can be considered as the
inverse process of dispersion, we hypothesize the pollution reduction 𝑟 (𝑔|𝑠𝑘 ) in grid 𝑔 due to sprayer 𝑠𝑘 behaves
similar as in Eq. (1). Due to the difficulty to obtain parameters such as 𝛿 , we modify the original Gaussian plume
model to characterize pollution reduction 𝑟 (𝑔|𝑠𝑘 ) in grid 𝑔 due to sprayer 𝑠𝑘 as follows:

𝑟 (𝑔|𝑠𝑘 ) =
𝑄𝑠𝑘

2𝜋𝜙 (𝑑𝑑𝑜𝑤𝑛 (𝑔,𝑔𝑘 ), 𝑓𝑒𝑡𝑎)�̄�𝑠𝑘
exp

(
−1

2

(
𝑑𝑐𝑟𝑜𝑠𝑠 (𝑔,𝑔𝑘 )

𝜙 (𝑑𝑑𝑜𝑤𝑛 (𝑔,𝑔𝑘 ), 𝑓𝑒𝑡𝑎)

)2
)

(2)

where𝑄𝑠𝑘 is the pollution reduction over time period Δ𝑡 in the grid where sprayer 𝑠𝑘 is installed, which is modeled
as Sec. 4.2, 𝑑𝑑𝑜𝑤𝑛 (𝑔,𝑔𝑘 ) and 𝑑𝑐𝑟𝑜𝑠𝑠 (𝑔,𝑔𝑘 ) are the downwind and crosswind distances between 𝑔 and the grid 𝑔𝑘
of sprayer 𝑠𝑘 , respectively. �̄�𝑠𝑘 is the average horizontal wind speed. 𝜙 (.) is a learnable function to determine
𝛿 . The input to 𝜙 (.) is downwind distance 𝑑𝑐𝑟𝑜𝑠𝑠 (𝑔,𝑔𝑘 ) and extra features 𝑓𝑒𝑡𝑎 as described in Table 4. We use a
multi-layer perceptron (MLP) to implement the function of 𝜙 (.). The detailed parameter learning procedure is
deferred to Sec. 5.3.
3Let’s make a 2-D coordinate axis with the wind direction as 𝑥 and the orthogonal one as 𝑦, which centers at 𝑒 . For grid 𝑔, the distance
between the vertical mapping of 𝑔 to 𝑥 axis and 𝑒 is called the downwind distance, while the distance between vertical mapping of 𝑔 to 𝑦 axis
and 𝑒 is called the crosswind distance.
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Fig. 8. Parameter learning in air pollution reduction map 𝑅(𝑔). The air quality map without water spraying𝐶𝑑 (𝑔) is generated
via the air quality prediction model in Sec. 5.1. The ground truth air quality map 𝐶 (𝑔) is generated by interpolating the air
quality sensor measurements.

5.2.2 Spatial Pollution Reduction of Multiple Sprayers. Consider 𝐾 sprayers deployed in the entire region of
interest. Then the total pollution reduction 𝑅(𝑔) in grid 𝑔 over time period Δ𝑡 is given by:

𝑅(𝑔) =
𝐾∑︁
𝑘=1

𝐼 (𝑠𝑘 )𝑐 (𝑔|𝑠𝑘 ) (3)

where 𝐼 (𝑠𝑘 ) is an indicator function of the operating status 𝑜𝑘 of sprayer 𝑠𝑘 , i.e.,

𝐼 (𝑠𝑘 ) =
{

1 if 𝑜𝑘 is on
0 if 𝑜𝑘 is off

(4)

5.3 Parameter Learning for Air Pollution Reduction Maps
Although our air pollution reduction map modeling is built upon domain knowledge, some parameters are still
difficult to access, which are captured by the MLP parameters in 𝜙 (.) of Eq. (2). This subsection explains how
to learn these MLP parameters (see Fig. 8). Our idea is to first generate the air quality map due to pollution
dispersion 𝐶𝑑 (𝑔) for 𝑡 + Δ𝑡 via the air quality prediction model in Sec. 5.1. Then we calculate the air quality
reduction map 𝑅(𝑔) at 𝑡 + Δ𝑡 following Eq. (3). The final air quality map at 𝑡 + Δ𝑡 is calculated as:

𝐶 (𝑔) = 𝐶𝑑 (𝑔) − 𝑅(𝑔) (5)

This map can be compared with the ground truth air quality map 𝐶 (𝑔) by interpolating the air quality sensor
measurements at 𝑡 + Δ𝑡 . The difference between these two maps enables us to update the parameters in 𝜙 (.).

As we will show in Sec. 5.4.1, the air quality map prediction model without spraying influence is accurate for
small Δ𝑡 . It means the main air quality estimation error comes from 𝑅(𝑔), i.e., the MLP parameters we would like
to learn. Given the sensor measurements at 𝑡 + Δ𝑡 , we can generate the ground truth air quality map 𝐶 (𝑔) by
Gaussian processes [31]:

𝐶 (𝑔) ∼ GP(m, v) (6)
where m and v are the mean and covariance function, respectively. Gaussian process based interpolation proves
highly accurate with a dense pollutant sensor deployment [7, 9], which is the case in our scenario. We define the
loss function as the difference between ground truth 𝐶 (𝑔) and predicted one 𝐶 (𝑔). Using this procedure and loss
function, we can successfully learn the parameters in 𝜙 (.) by optimizing and decreasing the loss.
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Table 6. Accuracy of air quality map prediction (without water spraying) measured by MAE.

Model Spring (Mar. 2021) Summer (Aug. 2021)
𝑃𝑀2.5 (𝜇𝑔/𝑚3) 𝑃𝑀10 (𝜇𝑔/𝑚3) 𝑃𝑀2.5 (𝜇𝑔/𝑚3) 𝑃𝑀10 (𝜇𝑔/𝑚3)

Naive 4.5 5.6 3.8 4.9
ConvLSTM 3.4 4.7 3.2 4.1
w-ConvLSTM 1.6 2.8 1.5 2.6
Air-ConvLSTM 1.2 1.5 0.9 1.4

5.4 Evaluations on Air Pollution Reduction Map Generation
As mentioned, accurate air pollution reduction map generation is crucial for effective sprayer scheduling. Next,
we assess the accuracy of air pollution map generation ignoring and considering water spraying in sequel.

5.4.1 Effectiveness of AirQuality Map Prediction without Spraying. We first evaluate the air quality map prediction
without considering water spraying.

Setups. We compare our Air-convLSTM (see Sec. 5.1) with three baselines:
• Naïve: use the current timestamp value as the predictions for future hours.
• ConvLSTM: use historical air quality map as input and ConvLSTM [33] to predict future maps [22],
• w-ConvLSTM: concatenate weather maps with air quality maps, and use ConvLSTM [33] for prediction.

We use the air quality sensor box data of the Research Area from September 1st, 2019 to April 30th, 2020 for
training of each algorithm. Then we use the data in March, 2021 as the Spring test dataset and those from August,
2021 as the Summer test dataset. We assess the air quality map prediction accuracy for the next 6 hours since the
prediction for the next 6 hours suffice for our scheduling algorithm (see Sec. 6).
Results. Table 6 shows the MAEs for air quality map prediction. Air-ConvLSTM acquires the best overall

prediction accuracy in both test sets. Compared with w-ConvLSTM, our method decreases the prediction error
of 𝑃𝑀2.5 and 𝑃𝑀10 by 25.0% and 46.4% in Spring test period, and 40.0% and 46.2% in Summer test period. More
importantly, Air-ConvLSTM also successfully predicts the air quality changing patterns. i.e., forecasting the air
quality map sudden changing time slots and pollution evolving patterns. This is the key prerequisite for the
success of the air pollution propagation path algorithm in Sec. 6.2.1. Fig. 9 shows an example of predicting the
pollution sudden change patterns using all methods. We can find that ConvLSTM fails to predict accurately without
using the weather data. w-ConvLSTM partially solves the problem and improves the performance by including
weather features. However, simply concatenating weather data fails to learn the air quality changing patterns,
and leads to constant good air quality predictions in all future hours as shown in Fig. 9. Instead, Air-ConvLSTM
concatenates the weather encoder information with the air quality map predictions, thus predicting the changing
patterns from bad to good with precise time slots. This greatly helps for the pollution propagation path detection
and thus the overall success of iSpray.
We also evaluate the impact of prediction steps (in hours) and training data length on the accuracy of Air-

ConvLSTM. As shown in Fig. 10-(a), increasing the prediction steps from 1 to 8, the MAE of Air-ConvLSTM
increases from 0.6 to 1.8. We choose to predict the next 6 hours in iSpray because the prediction MAE 1.4 is
relatively low and 6-hour predictions are also suitable for our scheduling algorithm (see Sec. 6). When increasing
the training data length from 2 to 8 months, the prediction MAE of Air-ConvLSTM decreases from 2.3 to 1.4 (see
Fig. 10-(b)). This is expected because more historical data improves prediction accuracy.

5.4.2 Effectiveness of Spraying-induced Air Pollution Reduction Map. Next we verify the effectiveness of our air
pollution reduction map for iSpray. The main aim is to show the necessity to separate pollution reduction map
generation as in Sec. 5.2.
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Fig. 10. Parameter study of air quality map prediction. (a) Impact of prediction steps; (b) Impact of training data amount.

Setups. We compare our method for pollution reduction map generation with the following three baselines:
• Nav̈e: use the current air quality map as the prediction of next step with spraying influence.
• Land Use Regression: use Land use regression model [16] and spraying information as input and predict the
air quality map at next step.

• Prediction-based: concatenate spraying data to the input of FCN module in Air-ConvLSTM for prediction.
We use data from the Research Area during May 1st, 2020 to August 31st, 2020 for training, and data collected

in April 2021 (Spring dataset), and September 1st, 2021 to October 31st, 2021 (Autumn dataset) for testing. The
sprayer scheduling strategies for the training and testing periods are as follows. During the training period, we
follow the same sprayer scheduling scheme as described in Sec. 4.2.2, i.e., opening the sprayer once the local air
quality in above the good air quality threshold. During the testing periods, the sprayer devices are operated by
following the schedule timetable produced by iSpray Sec. 6.2.2.

Given the current air quality sensing box measurements and the sprayer status information for the next hour,
the task is to predict the air quality map in the next hour. We use MAE to quantify the prediction accuracy of
each algorithm.
Results. Table 7 shows the overall results. Land use regression model and Prediction-based model fail to

generate accurate air quality map with the spraying influence. By decomposing the problem into air quality
map prediction without spraying influence and spraying-based air quality modeling, iSpray successfully learns
the unknown parameters in the model and make accurate air quality map with a small amount of data. iSpray
achieves MAEs of 1.9 and 2.6 for Spring and Autumn datasets, a significant improvement over all the baselines.

Fig. 11 shows the example maps generated by different methods. iSpray benefits from the air pollution reduction
model and generates the most accurate map with spraying influence, which is an essential component for our
scheduling algorithm.
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Table 7. Air pollution reduction map accuracy comparison for 𝑃𝑀2.5 (𝜇𝑔/𝑚3) measured by MAE.

Dataset Naïve Land use regression Prediction-based Reduction Map
Spring 16.4 14.3 9.8 1.9
Autumn 19.2 15.6 11.9 2.6

(a) (b) (c) (d) (e)

Fig. 11. Air pollution reduction map accuracy comparison case study: (a) air quality map at 𝑡 , which is also the output of
Naïve; (b) ground truth air quality map at 𝑡 + 1; (c) Land use regression baseline; (d) Prediction-based baseline; (e) iSpray.

Fig. 12. Example of cost-effective scheduling intuition: (a) an example setting; (b) scheduling based on real-time 𝑃𝑀2.5
values fails, while switching on the sprayer (and those along the pollution propagation path) in advance may keep the 𝑃𝑀2.5
concentration within the threshold with less total switch-on time.

6 COST-EFFECTIVE SPRAYER SCHEDULING
The air pollution reduction map (Sec. 5) enables us to quantify the impact of switching on each sprayer on the
spatial distribution of pollutant concentrations. We now present our cost-effective sprayer scheduling scheme to
the control the air pollution at key POIs with minimal number of operating sprayers.

6.1 Feasibility of Cost-Effective Sprayer Scheduling
Given certain POIs in the region of interest, we aim to make a spraying schedule for the next 𝜏 hours (i.e., whether
each sprayer should be switched on or off in each hour) such that (i) the pollution concentrations in the grids
where the POIs reside are within a given threshold and (ii) the total switch-on hours are minimized. Minimizing
the total switch-on hours is necessary because a single sprayer consumes 120 𝑘𝑊ℎ electricity and 14.4𝑚3 water
if operating non-stop in a day. We explain the intuitions for cost-effective scheduling via an example below.

Fig. 12-(a) shows a simplified setting of our problem, where the space is partitioned into 9 grids and there is a
sprayer and a co-located air quality sensing box in each grid. Our goal is to decide the scheduling timetable for
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Fig. 13. Overview of our cost-effective sprayer scheduling scheme.

all the 9 sprayers such that the 𝑃𝑀2.5 concentration in the target grid i.e., grid 4 in Fig. 12-(a) is under a given
threshold, which is shown by the red dotted line in Fig. 12-(b). One scheduling strategy is to decide whether to
switch on a sprayer according to the real-time 𝑃𝑀2.5 measurements at the co-located air quality sensing box.
Suppose the real-time 𝑃𝑀2.5 concentration in grid 4 exceeds the threshold at time 𝑇𝑏 . This strategy will then
switch on the sprayer in grid 4 at time𝑇𝑏 till𝑇𝑑 , when the real-time 𝑃𝑀2.5 concentration falls below the threshold,
as shown by the yellow dotted line in Fig. 12-(b). Since the pollution reduction is not instant, this method will fail
to keep the 𝑃𝑀2.5 concentration within the threshold during 𝑇𝑏 to 𝑇𝑑 . Our solution is to switch on the sprayer in
grid 4 in advance as well as the a set of sprayers along the pollution propagation path towards grid 4. That is, we
switch on the sprayer in grid 4 at time 𝑇𝑎 , when the 𝑃𝑀2.5 concentration is still within the threshold. This way,
the peak 𝑃𝑀2.5 concentration at 𝑇𝑐 will be under the threshold, as shown by the green dotted line in Fig. 12-(b).
Note that the switch-on time of the sprayer in grid 4 can be short if certain sprayers along the propagation path
(i.e., grid 1, 2 and 3, where the arrow denotes the direction of pollution propagation) have been switched on
before the pollution propagates to grid 4. The example implies the following:

• Switching on sprayers based on real-time pollution concentration fails to keep the pollution at target POIs
under control due to delays in spraying-induced pollution reduction. Therefore, it is important to predict
the future pollution concentration and switch on the sprayers in advance.

• Switching on sprayers along the pollution propagation path holds promise to keep the pollution at target
POIs under control and reduce the total switch-on time by suppressing the pollution near the source.

6.2 Scheduling Method
Inspired by the motivation example in Sec. 6.1, Fig. 13 illustrates our cost-effective sprayer scheduling scheme. It
first predicts the air quality maps for the next 𝜏 hours without water spraying (Sec. 5.1) and then generate the
pollution propagation path towards the target grids (Sec. 6.2.1). Then we take the predictions, propagation path
and the given threshold to make a scheduling timetable to guarantee the air quality in the target grids with small
total sprayer switch-on time (Sec. 6.2.2). We give the implementation details below.

6.2.1 Deriving Pollution Propagation Path. We identify pollution propagation paths by adapting the method in
[23]. The key observation is that if the uptrend interval (pollution propagation) of grid 𝑎 is ahead of 𝑏, then 𝑎
is considered a causal parent node of 𝑏. Their method builds causal graphs and finds the top-k patterns from
all generated graphs using historical data. These patterns are the statistically frequent pollution propagation
behaviors. For our case, however, we should identify the predicted pollution propagation patterns at the current
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Fig. 14. (a) Air pollution propagation path to one target location. (b) one example of spraying scheduling along the air
pollution propagation path.

Algorithm 1: Deriving propagation paths
Input: Predicted air quality readings at all locations for next Δ𝑡 hours, pollution influence circles list 𝑃𝐶 , target locations 𝐿, distance

threshold 𝑑
Output: Air pollution propagation paths 𝑃𝑎𝑡ℎ to target locations 𝐿

1 for each target location 𝐿𝑖 in 𝐿 do
2 𝑃𝑎𝑡ℎ𝑖 = [𝐿𝑖 ] ; // initialize the propagation path for location 𝐿𝑖

3 Conduct pollution influence circles (𝐶 𝑗 , 𝑗 ∈ (1 . . . 𝑙) , where smaller index represents small diameter) centered in target location
𝐿𝑖 using the given values in 𝑃𝐶 (black circles in Fig. 14);

4 for 𝑗 ∈ (1 . . . 𝑙) do
5 Find all stations 𝑆𝑐 located in𝐶 𝑗 apart from stations in 𝑃𝑎𝑡ℎ𝑖 ;
6 for for each station 𝑥 in 𝑆𝑐 and each 𝑦 in 𝑃𝑎𝑡ℎ𝑖 do
7 if (the distance between (𝑥, 𝑦) ≤ 𝑑) and (max value of 𝑥 ≥ max value of 𝑦) and the uptrend interval of 𝑥 is ahead of 𝑦

then
8 add station 𝑥 to 𝑃𝑎𝑡ℎ𝑖

9 Concatenate all propagation path 𝑃𝑎𝑡ℎ𝑖 and get the overall propagation path 𝑃𝑎𝑡ℎ
10 return 𝑃𝑎𝑡ℎ

timestamp. Given the spatiotemporal air quality data, we aim to estimate the pollution propagation paths.
Algorithm 1 illustrates the entire process.

• Firstly, we characterize the causal parent nodes of each grid as [23]. However, we add two more constraints:
(i) the maximum values of parent nodes should be larger than the ones of child node; and (ii) the distance
between them should be smaller than some threshold. These two constraints facilitate finding the pollution
propagation path for a single timestamp.

• Secondly, we introduce the pollution influence circles to iteratively find the causal parent nodes of target
grid from inner circles to outside ones (see the circles centered at the target grid in Fig. 14-(a)).

• Finally, we apply the above two steps for each target grid, and then we can derive the propagation path, as
the arrows shown in Fig. 14-(a).

6.2.2 Putting it Together. Algorithm 2 illustrates our sprayer scheduling algorithm, which generates a timetable
for all the sprayers in the next 𝜏 hours. The algorithm works as follows.

• For each target location, we first compute the highest prediction pollution concentration in next 𝜏 hours. If
the peak concentration exceeds the threshold, the propagation path estimation module is called to identify
the propagation path to this target location, e.g., the arrows in Fig. 14-(a).
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Algorithm 2: Scheduling algorithm
Input: Predicted air quality map in next 𝜏 hours; target locations 𝐿; threshold value𝑉𝑡ℎ𝑟𝑒𝑠 ; air quality map prediction model and air

pollution reduction map model
Output: Schedule timetable𝑇𝑠𝑘𝑑 for all sprayer systems in next 𝜏 hours

1 For all target locations 𝐿, find the highest predicted air quality readings𝑉𝐿𝑖 at location 𝐿𝑖 in next 𝜏 hours, assume the timestamp is Δ𝑡
2 if 𝑉𝐿𝑖 >𝑉𝑡ℎ𝑟𝑒𝑠 then
3 Conduct the pollution propagation path for target location 𝐿𝑖 using Algorithm 1
4 for 𝑡 ′ ∈ (1 . . . Δ𝑡 ) do
5 Set sprayer to open if the local predicted 𝑃𝑀2.5 values are greater than𝑉𝑡ℎ𝑟𝑒𝑠
6 Conduct air pollution reduction map for 𝑡 ′ using the method in Sec. 5
7 Update air quality map predictions after the current timestamp // update predictions after each scheduling step

to incorporate the influence of spraying

8 Get the scheduling timetable𝑇 𝑖
𝑠𝑘𝑑

for location 𝐿𝑖
9 Go to step 1 until convergence or all sprayer systems have been scheduled.

10 Concatenate all scheduling timetable𝑇 𝑖
𝑠𝑘𝑑

and get the overall scheduling timetable𝑇𝑠𝑘𝑑
11 return𝑇𝑠𝑘𝑑

• Given the pollution propagation path in previous step, we greedily decide the sprayer status. We start
with the first time slot and set the sprayers along the propagation path as open if the concentrations in
the grids of these sprayers are above the threshold. After each time slot, we update the future air quality
predictions to incorporate the influence of spraying. We continue the process till the predicted pollution
concentrations are below the threshold or all sprayers are switched on. One example scheduling timetable
is shown in Fig. 14-(b).

• We apply the same pipeline to all target locations until their predicted peak concentrations are below the
threshold or all sprayers are used.

6.2.3 Visualization of iSpray Scheduling. We use one real water spraying control case to illustrate the effectiveness
of the scheduling algorithm in iSpray, i.e., Algorithm 2. Assume the current timestamp is 𝑡 and we try to decide
the scheduling timetable for next 𝜏 hours (in our case, 𝜏 = 6) to suppress the air pollution in the target area.
Following the scheduling algorithm in Algorithm 2, iSpray works as follows to produce the scheduling timetable
for all spraying systems.

• iSpray first predicts the air quality maps for the next 6 hours as shown in first row of Fig. 15. The highest
prediction values for target area is in 𝑡 + 4, so Δ𝑡 = 4.

• Using the propagation path found using Algorithm 1, iSpray schedules the sprayers from the sources
to target area step by step, and generates the new air quality map with spraying influence. iSpray only
schedules those sprayers along the propagation path instead of all where the predicted concentrations are
above the threshold.

• After deciding the sprayers to switch on in the next 4 hours, iSpray generates new air quality maps with
spraying influence (third row in Fig. 15). The air quality readings in the target area are now below the
threshold, so iSpray terminates.

We can see that iSpray only schedules the necessary sprayers along the propagation path which affect the Target
Area. Therefore our sprayer scheduling is cost-effective. The difference between the predicted air quality map
and the ground truth one (generated by Gaussian process interpolation, see Sec. 5.3) is small (see Sec. 5.4.1 and
Sec. 5.4.2 for quantitative results), which also validating the effectiveness of iSpray.
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Fig. 15. One real water spraying control use case using iSpray. Black box represents the Target Area.

7 EVALUATION OF ISPRAY SCHEDULING
This section evaluates the scheduling of iSpray and discuss its limitations and extensions.

7.1 Overall Experiment Setups
Since it is impossible to test sprayer scheduling schemes simultaneously at the same location, we test sprayer
scheduling in the Target Areas and use the Control Areas as the control group without spraying to derive
quantitative performance metrics. Note that the scheduling algorithm involves training expect those for air
quality prediction and pollution reduction map generation. In the following evaluations, these models are trained
using the datasets in Sec. 5. We only explain the detailed setups for the testing datasets in each experiment below.
We use water usage (𝑚3) and electricity usage (𝑘𝑊ℎ) to compare the cost-effectiveness of different sprayer

scheduling methods. We use the mean of real-time and 24-hour average value of 𝑃𝑀2.5 and 𝑃𝑀10 (𝜇𝑔/𝑚3),
as well as the excellent quality rate of 𝑃𝑀2.5 and 𝑃𝑀10 (𝑃𝑀2.5 ≤ 35𝜇𝑔/𝑚3 according to China Strandard 4,
𝑃𝑀10 ≤ 40𝜇𝑔/𝑚3 as adopted in the paper) to assess the air quality, which are also used as the threshold in our
model. One sprayer consumes 5 𝑘𝑊 electricity 0.6𝑚3 water per hour. We consider a scheduling resolution of
an hour, as in Sec. 6.1. For all the evaluations below, we use the average performance of the three Control Areas
shown in Fig. 3-(c) to mitigate the impact of relative orientations to the Target Areas.

7.2 Performance of Different Scheduling Algorithms
We mainly compare iSpray with the baseline method that controls sprayers based on the real-time pollution
concentrations measured at the co-located sensing box, which is denoted as Real-Time-Values afterwards.

Setups. We test these two sprayer scheduling schemes in October 2020 in Target Area 1. For fair comparison,
we choose the first 30 days and split them into 15 pairs. In each pair of two days, we randomly choose iSpray or

4China National Standard: https://healthandsafetyinshanghai.com/china-air-quality/
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Table 8. Performance comparison between different scheduling methods.

Method Water Electricity Real-time 24-hour average Excellent Quality Rate
(𝑚3) (𝑘𝑊ℎ) 𝑃𝑀2.5/ 𝑃𝑀10 (𝜇𝑔/𝑚3) 𝑃𝑀2.5/ 𝑃𝑀10 (𝜇𝑔/𝑚3) 𝑃𝑀2.5/ 𝑃𝑀10

Real-time-values (15 days) 5,108 42,571 40 / 46 38/44 72% / 75%
iSpray (15 days) 3,326 24,309 34 / 36 33/36 85% / 91%

iSpray over Real-time-values -34.8% -42.3% -15.0% / -21.7% -13.2% / -18.2% +13% / +16%

the baseline for scheduling in the first day and the other for the second day. Therefore we have 15 test rounds in
total, as shown in Fig. 3-(d). We report the average performance of these 15 test rounds.

Results. Table 8 summarizes the performance of iSpray and the Real-time-values baseline. If all the sprayers are
operating non-stop for 15 days, the water and electricity usage are 11, 880𝑚3 (0.6 ∗ 24 ∗ 55 ∗ 15) and 99, 000𝑘𝑊ℎ

(5 ∗ 24 ∗ 55 ∗ 15), respectively. Both scheduling schemes notably reduce the usage of water and electricity, where
our iSpray requires only 3, 326𝑚3 water and 24, 309𝑘𝑊ℎ electricity, which reduces the water and electricity
usage by 34.8% and 42.3% compared with the Real-time-values baseline. Meanwhile, the mean values of real-time
𝑃𝑀2.5 and 𝑃𝑀10 decrease by 6𝜇𝑔/𝑚3 and 10𝜇𝑔/𝑚3, which accounts for 15.0% and 21.7%. The mean values of
24-hour average 𝑃𝑀2.5 and 𝑃𝑀10 also decrease by 5𝜇𝑔/𝑚3 and 8𝜇𝑔/𝑚3, which accounts for 13.2% and 18.2%. The
excellent quality rate of 𝑃𝑀2.5 and 𝑃𝑀10 increase by 13% and 16%.

7.3 Performance With and Without iSpray Scheduling
This experiment quantifies the air pollution reduction due to iSpray. Since it is difficult to directly measure the
air quality with and without water spraying at the same location and time, we adopt the distribution similarity
concept [6] for indirect comparison. Specifically, it is observed that the air quality distributions of different
regions within a city are similar in the same time period [6]. This allows us to assess the impact of water spraying
for the same time period by comparing with the Control Areas.
Setups. We select March to April 2021 for testing in Spring, and August to September 2021 for testing in

Autumn. Specifically, we switch off all the sprayers in Target Area 1 in March 2021 and August 2021, and schedule
the sprayers by iSpray in Target Area 1 in April 2021 and September 2021. We use the air quality data during the
same months from the three Control Areas as the control group (by averaging across the three Control Areas.

Results.We first show that the distribution similarity proposed in [6] holds for our deployment. Specifically,
we plot the air quality distributions of Target Area 1 and the Control Areas in March 2021 and August 2021, when
all sprayers were switched off. As shown in Fig. 16-(a),(e) and Fig. 16-(c),(g), the two distributions of the target and
the control groups are similar. Therefore, the differences in air quality distributions during the same time period
are mainly due to water spraying. This is shown in Fig. 16-(b),(f) and Fig. 16-(d),(h), where the only difference is
that the sprayers in Target Area 1 were switched on by iSpray. We can observe notable air pollution reduction.

More quantitatively, we use a 5-number-summary (min,1st quartile, median, 3rd quartile and max) to compare
the distribution difference between the target area and the control area in April 2021 and September 2021. Table 9
summarizes the differences. According to Table 9, in April 2021, the 𝑃𝑀2.5 median and 3rd quartile in Target
Area 1 are 27 and 33, which are reduced by 21.2% and 29.8% compared with those in the Control Areas. The 𝑃𝑀10
median and 3rd quartile of Target Area 1 are 46 and 65, a reduction of 39.5% and 41.2% compared with those
in the Control Areas. Similarly, in September 2021, the 𝑃𝑀2.5 median and 3rd quartile in Target Area 1 are 25
and 39, which are reduced by 24.2% and 36.1% compared with those in the Control Areas. The 𝑃𝑀10 median and
3rd quartile of Target Area 1 are 58 and 81, yielding a reduction of 23.7% and 37.2% compared with those in the
Control Areas.
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Fig. 16. Visualization of air quality (𝑃𝑀2.5/𝑃𝑀10) distributions of the Control Areas and Target Area 1.

Table 9. Comparison between the 𝑃𝑀2.5/𝑃𝑀10 distributions of Control Areas and Target Area 1.

Time Region iSpray Control min 1st quartile median 3rd quartile max

March 2021 Control Areas - 4/20 39/86 60/135 100/193 194/371
Target Area 1 OFF 7/18 41/87 63/133 103/187 186/366

April 2021 Control Areas - 4/18 22/52 33/76 47/111 267/455
Target Area 1 ON 4/13 20/33 27/46 33/65 146/379

Aug. 2021 Control Areas - 3/4 12/26 19/40 33/59 138/201
Target Area 1 OFF 4/5 14/22 21/36 32/56 137/215

Sep. 2021 Control Areas - 4/5 17/41 33/76 61/129 188/326
Target Area 1 ON 4/4 20/31 25/58 39/81 119/265

To clearly illustrate the pollution reduction on a daily basis, we plot the daily 𝑃𝑀2.5 box-plots of Target Area 1
and the Control Areas for April and September, 2021 in Fig. 17-(a),(b). We have the following observations. (i) The
𝑃𝑀2.5 distributions of Target Area 1 and the Control Areas are similar if the 𝑃𝑀2.5 concentrations are low. This
is because iSpray will switch off the sprayers when the pollution level is low. (ii) The median and max values
are significantly reduced during high 𝑃𝑀2.5 period, indicating that iSpray switches on the sprayers to suppress
pollution during these times. The observations also hold for 𝑃𝑀10, as shown in Fig. 17-(c),(d).
To further analyze the performance of iSpray in reducing the air pollution, especially its effectiveness in

dropping the pollution from a polluted level to an excellent one, the total number of days above the excellent air
quality level is calculated by comparing the 24-hour average value. The results in Table 10 show that the total
number of pollutant days in April are 14 and 28 for 𝑃𝑀2.5 and 𝑃𝑀10 in Control Area, and they are reduced to 3
and 17 days by applying iSpray in Target Area 1, which accounts for a reduction of 79% and 39%, respectively.
Similarly, a reduction of 53% and 41% can also be found for 𝑃𝑀2.5 and 𝑃𝑀10 in the September dataset.
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Fig. 17. Daily pollution control results in Target Area 1 compared with Control Areas in 2021.

Table 10. Total days above excellent air quality level in Target Area 1 compared with Control Areas in 2021.

Pollution Type April September
Control Area Target Area Control Area Target Area

PM2.5 (> 35𝜇𝑔/𝑚3) 14 3 19 9
PM10 (> 40𝜇𝑔/𝑚3) 28 17 29 17

7.4 Performance in Different Target Areas
This experiment demonstrates the generality of iSpray.

Setups. We select a different target area as shown in Fig. 3-(c), denoted as Target Area 2 to test our iSpray
scheduling algorithm. The test took place in October 2021. As with Sec. 7.3, we use the air quality data of the
Control Areas from the same period as the control group.
Results. Fig. 18-(a) plots the pollution concentration distribution in Target Area 2 and the Control Areas. We

observe notable reduction of high pollution concentrations in the Target Area 2. Quantitatively, the 𝑃𝑀2.5 median
and 3rd quartile in Target Area 2 are 30 and 45, which are reduced by 23.1% and 35.7% compared with those in
the Control Areas. The 𝑃𝑀10 median and 3rd quartile of Target Area 2 are 51 and 75, resulting in a reduction of
32.6% and 37.5% compared with those in the Control Areas. Fig. 18-(b) further illustrates the daily air pollution
distributions. We observe the same patterns for Target Area 1. The days above the excellent air quality level for
Control Area are 16 and 26 for 𝑃𝑀2.5 and 𝑃𝑀10, and iSpray reduces them to 8 and 16 days for Target Area 2,
yielding a reduction of 50% and 31%, respectively.

In summary, the extent of pollution reduction by iSpray is similar in Target Area 2 as in Target Area 1, validating
the generality of our method.
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Fig. 18. (a) 𝑃𝑀2.5 and (c) 𝑃𝑀10 distributions of the Control Areas and Target Area 2; Daily (b) 𝑃𝑀2.5 and (d) 𝑃𝑀10 control
results comparison between Target Area 2 and the Control Areas.

7.5 Discussions
We briefly discuss the hyperparameter selection in iSpray and the potential extensions to mobile deployments.

7.5.1 Hyperparameters in iSpray. We set the threshold values (𝑉𝑡ℎ𝑟𝑒𝑠 in Algorithm 2) of 𝑃𝑀2.5 and 𝑃𝑀10 to
35𝜇𝑔/𝑚3 and 40𝜇𝑔/𝑚3, respectively, which are also the excellent air quality threshold in China, where our system
is deployed. In practice, reducing the threshold values𝑉𝑡ℎ𝑟𝑒𝑠 to near zero tends to keep all the sprayer switched on
in Algorithm 2, leading to non-stop water spraying. Increasing the 𝑉𝑡ℎ𝑟𝑒𝑠 to higher values will decrease the water
sprayer usage time. For our evaluation, we aim to control the pollution level according to the local standards.
The spray schedule timetable of the proposed approach depends on the selected threshold, and iSpray aims to
clean the local air quality to a level below the threshold. When it is impossible to achieve the local standard,
all available sprayers will be open. In this case, the mobile sprayer solutions or hybrid one may help to further
suppress the pollution level, as described in Sec. 7.5.2.

7.5.2 Extensions to Mobile Sprayer Deployments. In addition to the static deployments like iSpray, there is also
extensive research interest in exploiting mobile sensor deployments for air pollution monitoring [13, 14, 16, 18,
27, 40]. We can also extend our scheduling algorithms to mobile settings e.g., with water sprayers mounted on
trucks as follows. (i) Derive the pollution propagation paths in the next few hours as Algorithm 1. (ii) Revise
the schedule algorithm in Algorithm 2 with two more considerations: limited water storage and the travel time
of the mobile sprayer to specific locations. One solution is to decide locations where sprayers are needed in
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each time slot using Algorithm 2, and then adapt existing route planning algorithms for spatial crowdsourcing
[34, 37, 44] to dispatch mobile sprayers to these locations at the targeting time slots while satisfying the water
storage constraints.

A further extension is a hybrid mobile and static water spraying system where mobile sprayers act as backups
when pollution control with static water spraying fails (line 9 in Algorithm 2). In this case, mobile sprayers can
be scheduled to further suppress the pollution level.

8 RELATED WORK
Our work is related to the following two categories of research.

8.1 Ubiquitous Urban Air Pollution Sensing and Inference
The availability of portable sensors and urban data has enabled ubiquitous urban air pollution monitoring and
inference services. Installed at hot spots [7, 9, 32], vehicles [16, 18, 27, 40] or carried by citizens [28, 35], the
low-cost gas and dust sensors provide real-time and fine-grained measurements to analyze urban airborne
pollutant concentrations. With measurements collected from a large-scale deployment, accurate air quality map
can be generated via spatial interpolation such as Gaussian process [7, 9, 18]. Access to air quality related urban
data such as meteorological conditions, traffic flows, emission sources has enabled accurate air quality map
generation with sparse sensor deployments by designing dedicated inference models such as spatiotemporal
co-training [45], weather-aware auto-encoder [27], etc. Integrating sensor measurements with urban data also
facilitates analytics beyond map generation. Examples include simultaneous air quality estimation and prediction
[5, 10], pollution propagation pattern discovery [23], and sensor calibration function transfer [6].
Our work is also built upon the fusion of sensor and urban data. However, it differs from existing literature

on ubiquitous air quality inference in two aspects. (i) Prior urban air pollution map generation proposals
[7, 9, 18, 27, 45] mainly model the dispersion of airborne pollutants from emission sources. We characterize and
model the absorption of pollutants due to water spraying, which integrates pollution control measures into
accurate air quality map generation. (ii) Previous air quality analytics services only offer passive monitoring of
pollution to raise awareness [9, 16, 23, 27, 45]. We propose a cost-effective spraying scheduling strategy to keep
air pollution at critical POIs under control.

8.2 Water Spraying Systems for Dust Control
Water spraying is widely adopted for dust control in factories and mines [20, 21, 36] and its usage has recently been
extended for particulate matter control in urban areas [12, 25, 42]. Del Corno et al. [12] carry out an experiment
of removing aerosols with the help of high-pressure water spray nozzle as they generate water droplets that
are smaller in size compared to those from regular, low-pressure nozzles. The experiment was conducted in a
transparent glass chamber of size 0.5𝑚 × 1𝑚 × 1.5𝑚, equipped with a high-pressure spray nozzle system. Yu et al.
[42] proposes a geoengineering scheme to reduce air pollution in the cities of China with water spray technology.
The indoor experiment results show that the 𝑃𝑀2.5 concentration can be reduced significantly, the extent of
which depends on the scavenging coefficients. However, the authors did not evaluate the spraying system in
outdoor environment. Liu et al. [25] propose to use a sprinkling system along the roadside to mitigate 𝑃𝑀2.5 and
𝑃𝑀10 concentrations. However, it is only a conceptual system without quantitative analysis and results.

From the above reviews of related works, we can find that: (i) The current works on water spraying systems for
dust control still focus on single location (e.g., pollution sources) or indoor evaluations. How to characterize the
pollution reduction in outdoor environment for multiple sprayer devices in still an unsolved research problem. (ii)
Regarding the air pollution sensing research, current research are mainly about improving sensing data quality,
generating air quality maps, doing spatial inference or temporal predictions, etc. However, how to improve the
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air quality with existing pollution control systems (e.g., spraying system) is still missing. For the first time, we
propose a framework to fill the gap between air quality sensing and air pollution control with spraying system.

9 CONCLUSION
In this work, we propose iSpray, a data analytics engine for 𝑃𝑀2.5 and 𝑃𝑀10 control at critical POIs by cost-
effective water spraying. Its design systematically combines domain knowledge from environmental sciences and
machine learning techniques. iSpray offers learnable pollution reduction modeling at single locations, accurate air
pollution reduction map generation, and propagation-path-aware sprayer scheduling. Evaluations with in-field
sprayer deployments show that iSpray reduces the total sprayer switch-on time by 32%, while decreasing the
days of high 𝑃𝑀2.5 and 𝑃𝑀10 concentrations at key POIs by 12% and 16%. We envision our work as one of the
first endeavors for precise urban air pollution control with ubiquitous data and commodity hardware.
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