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Advances in deep neural networks (DNNs) have fostered a wide spectrum of intelligent mobile applications ranging from
voice assistants on smartphones to augmented realitywith smart-glasses. To deliver high-quality services, these DNNs should
operate on resource-constrained mobile platforms and yield consistent performance in open environments. However, DNNs
are notoriously resource-intensive, and often suffer from performance degradation in real-world deployments. Existing re-
search strives to optimize the resource-performance trade-off of DNNs by compressing the model without notably compro-
mising its inference accuracy. Accordingly, the accuracy of these compressed DNNs is bounded by the original ones, leading
to more severe accuracy drop in challenging yet common scenarios such as low-resolution, small-size, and motion-blur. In
this paper, we propose to push forward the frontiers of the DNN performance-resource trade-off by introducing human
intelligence as a new design dimension. To this end, we explore human-in-the-loop DNNs (H-DNNs) and their automatic
performance-resource optimization. We present H-Gen, an automatic H-DNN compression framework that incorporates hu-
man participation as a new hyperparameter for accurate and efficient DNN generation. It involves novel hyperparameter
formulation, metric calculation, and search strategy in the context of automatic H-DNN generation. We also propose human
participation mechanisms for three common DNN architectures to showcase the feasibility ofH-Gen. Extensive experiments
on twelve categories of challenging samples with three common DNN structures demonstrate the superiority of H-Gen in
terms of the overall trade-off between performance (accuracy, latency), and resource (storage, energy, human labour).
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1 INTRODUCTION
There is a growing interest to deploy deep neural networks (DNNs) on mobile and embedded devices for in-
telligent applications and services [1, 27, 44, 50]. Examples include user authentication on smartphones [54],
voice assistant on smartphones [65], facial action recognition on smart eyewear [60], and activity recognition
on Smart-Home devices [5]. However, deploying DNNs in mobile applications faces two critical challenges. On
the one hand, modern DNNs are often resource-hungry, which easily overwhelm the storage, computation, and
energy of mobile devices. For instance, Faster RCNN [49] which is widely used for fast object detection, still
requires 372𝑀𝐵 storage and 1826𝑀 MACs per inference. This is unacceptable for resource-scarce mobiles and
wearables such as smart-bands and smart-watches. On the other hand, benchmark-trained DNNs often incur
accuracy degradation when deployed in real-world mobile scenarios, particularly in challenging environments.
For example, the noisy environment (e.g. low-light), the sensor limitation (e.g. low resolution), and some shoot-
ing context (e.g. small, motion-blur, or camouflaged objects) often lead to challenging input samples and result
in severe accuracy degradation. These challenging scenarios are common in real-world mobile applications.

To improve the resource efficiency of DNNs, various model compression techniques have been proposed to
reduce the resource demand of DNNs without significantly compromising their accuracy [23, 53, 66]. Standalone
model compression techniques include pruning [9, 25, 33], quantization [42], knowledge distillation [24]. Some
research [38] also developed automatic selection frameworks to combine multiple compression techniques to
achieve higher accuracy and compression ratio. Despite extensive research on model compression, the com-
pressed DNNs typically yield lower accuracy than the original model. Therefore, they still suffer the same, if not
worse, performance degradation as the original DNNs in challenging scenarios.

To push the limit of the DNN’s performance-resource trade-off, we advocate human intelligence as a new
dimension in DNN optimization. Multiple reports [13, 31, 64] observe that humans are more robust and reliable
than DNNs in certain cases. For instance, one study [13] empirically showed that humans outperform DNNs on
classification tasks for distorted stimuli (blur or noise distortions). Another study [31] demonstrated through
the Turing test that the human vision can detect uncommon, camouflaged or obscured objects more effectively
than object detection DNNs.These observations have stimulated the exploration on human-in-the-loop machine
learning [7], where human knowledge and experience is integrated into the development of machine learning
models for higher accuracy or faster workflow [59, 62, 69]. However, existing human-in-the-loop machine learn-
ing proposals [4, 8, 74] are inapplicable to optimize the performance-resource trade-off in DNN design. This
is because they mainly focus on human participation mechanisms e.g. data annotation for dedicated learning
models or paradigms, without accounting for the resource constraints or the cost of human labour.

In this paper, we propose H-Gen, an automatic model compression framework for human-in-the-loop DNNs
(H-DNNs). The idea is to break the accuracy limit of the original DNN with human intelligence while formally
modeling the impact of human participation on the performance and resource utilization of DNNs. From a high
level, H-Gen incorporates human participation as a new dimension to optimize the performance (e.g. accuracy,
latency) and resource (e.g. storage, energy) of common DNN architectures in mobile applications. Like a genie
in the bottle, we consider human participation as the genie in the (deep) model, and quantify both its gains and
cost into the optimization of DNNs. The design and implementation of H-Gen faces two technical challenges.

• How to integrate human participation into DNNs, i.e., H-DNNs. Following the concepts of human-in-the-
loop machine learning, we design H-DNNs as DNNs with opportunistic human participation to guide the
DNN inference on uncertain input samples. In line with prior research [4, 72], we adopt human annotation
as the participationmechanisms and implement them as crowdsourcing tasks.We design dedicated human
annotation mechanisms for three DNN architectures commonly seen in mobile vision applications.
• How to model human participation to optimize the performance-resource trade-off of DNNs.Although human

participation improves model accuracy, it also incurs extra monetary cost and inference latency due to the
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involvement of crowdsourcing-based human annotation. We quantify the impact of human participation
as a unified hyperparameter and propose an automatic hyperparameter optimization framework to trade-
off the performance requirements and resource constraints of H-DNNs.

We implement H-Gen’s server side in Python and mobile side (application) in JAVA, and evaluate its per-
formance over three H-DNN architectures on twelve challenging datasets with three different mobile devices.
Evaluations show that the H-DNNs generated by H-Gen can improve accuracy by 0.6% ∼ 7.3% and reduce pa-
rameter size by 1.9× ∼ 18.6×, latency by 0.8× ∼ 2.9×, energy cost by 1.1× ∼ 2.8× with labour cost 0.6% ∼ 6.8%
compared with original DNNs.

The main contributions of this work are summarized as follows.
• Conceptually, this is the first work that incorporates human participation as a new optimization dimension

into the design space of efficient DNNs for better performance-resource trade-offs on mobile applications.
• Technically, we model human participation as a hyperparameter and devise H-Gen, an automatic hyper-

parameter tuning framework that generates H-DNNs with high performance (accuracy, latency) and low
resource overhead (storage, energy, and human labour). We also propose human participationmechanisms
for three common DNN architectures to showcase the feasibility of H-Gen.
• Extensive experiments show thatH-Gen achieves higher inference accuracy, lower energy cost, and smaller

storage footprint with little labour cost for various challenging tasks and mobile platforms.
In the rest of the paper, we review the related work in Section 2, present an overview of H-Gen in Section 3,

elaborate on the two components in Section 4 and Section 5, and explain its implementation in Section 6. We
report the evaluation of H-Gen in Section 7, and finally conclude in Section 8.

2 RELATED WORK

2.1 Human-in-the-Loop Machine Learning
Human-in-the-loop (HIL) machine learning [7] is a human-machine computing paradigm that integrates human
knowledge and experience into the development of machine learning models [59, 69]. It aims to improve the
model accuracy [59], accelerate the model development workflow [62], or provide better responsibility [70]. We
focus on improving model accuracy by exploiting human intelligence to handle difficult samples in DNN-based
mobile applications. Annotation is the most widely adopted type of human involvement, where humans are
asked to annotate samples or intermediate results [2, 28, 41, 73], although humans may also participate in data
preparation such as sample selection and normalization [18, 21, 78]. Here the primary design challenge is when
and how to integrate human annotation into the machine learning loop, which varies across learning paradigms
and applications. Prior work mainly deals with two learning paradigms: supervised learning [4, 64, 72] and
reinforcement learning [58, 74, 75]. For example, Yang et al. [64] proposed a HIL video anomaly detection model,
where human experts judge whether there is an abnormality in the video frame, and annotate either true or false
to themodel. Zhang et al. [72] developed an interactive disaster scene assessment schemewith human annotation
for accuracy improvement, by crowd-sourcing the annotations of the salient regions in disaster images with low
classification confidence. Arous et al. [4] designed a HIL model to find social influencers by annotating wether
a few candidates are critical social influencers by human experts. Zhang et al. [75] summarized different ways
(e.g. learning from human evaluation feedback, learning from human preference) to combine human knowledge
and decision-making with reinforcement learning to improve its effectiveness. Liu et al. [40] proposed a deep
reinforcement active learning method to corporate human intelligence into the pedestrian re-identification loop
through iterative labeling.

We make the first attempt at generating human-in-the-loop DNNs for mobile applications. Unlike prior HIL
supervised learning research [4, 64, 72] that merely considers the gains of human participation, we also account
for the cost of human participation, and incorporate model accuracy, human cost, and mobile devices’ resource
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constraints into an automatic optimization framework. Moreover, our work’s goals differ from the active learn-
ing methods. Our work is orthogonal to existing HIL reinforcement learning studies because we apply standard
reinforcement learning to optimize the hyperparameters of human-in-the-loop DNNs rather than involve hu-
mans in the process of reinforcement learning.

2.2 Neural Architecture Search
Neural Architecture Search (NAS) automates the architecture engineering of neural networks [16], and has gen-
erated models with accuracy that outperforms manually designed ones in many tasks. A typical NAS framework
consists of three elements: search space, search strategy, and model performance evaluation. Since the search
space of NAS is often exponential, extensive research strives to reduce the cost of NAS in various dimensions
[35, 77, 79]. In addition to accuracy, NAS has also been applied to cope with resource constraints. For example,
MnasNet [55] incorporates model latency into the objective to optimize both accuracy and latency. PPPNet [14]
is an efficient NAS scheme to search for Pareto-optimal architectures under multiple objectives. ChamNet [11]
devises accuracy and resource e.g. latency and energy predictors for multi-objective architecture search.

In addition to fine-grained architecture search, NAS is also widely used for high-level hyperparameter op-
timization. Zela et al. [71] combined network architecture and hyperparameter search efficiently and used a
probabilistic model to sample promising configurations to optimize seven hyperparameters such as initial learn-
ing rate and batch size. Dong et al. [15] generalized the concept of efficient architecture search to hyperparameter
search and adopted an RL controller to learn the probability distribution for the hyperparameter candidates.

In this paper, we adopt the NAS concepts for automatic hyperparameter optimization of human-in-the-loop
DNNs (H-DNNs). Specifically, we define the search space of H-DNNs that incorporates human efforts as a new
hyperparameter, and design a two-stage search strategy to generate effective and efficient models.

2.3 DNN Generation for Mobile Devices
Deploying DNNs to mobile devices faces unique challenges because DNNs easily exceed the resource limits of
mobile devices. There have been various standalone model compression techniques to reduce the resource foot-
print of DNNswithout notably compromising their accuracy, such as pruning [34], quantization [42], knowledge
distillation [24] etc. Multiple model compression techniques can also be combined for better accuracy-resource
trade-off. For example, Polino et al. [47] leveraged quantization and knowledge distillation to achieve similar
accuracy to full-precision teacher models with up to order of magnitude compression. Liu et al. [37] proposed a
context-based fast online DNN compression algorithm by adaptively selecting the elite compression operations.

Our work is most related to AdaDeep [36, 38], which automatically selects and combines different compres-
sion techniques to generate DNNs according to diverse task requirements and resource constraints. However,
the DNNs generated by AdaDeep may incur notable accuracy loss under severe resource budgets because the ac-
curacy is restricted by that of the uncompressed model. We break this accuracy restriction by introducing human
involvement, which improves the accuracy of the uncompressed model in case of challenging input samples (as
enumerated in Section 7.1.1, where the concrete evaluation results are in Section 7.2.2).

We also model the cost of human involvement into the model generation framework and achieve a better
overall accuracy-resource trade-off.

3 H-GEN OVERVIEW
This section presents an overview of H-Gen, a framework to automatically generate human-in-the-loop DNNs
that deliver better performance-resource trade-off than conventional DNNs. The key novelty ofH-Gen is a NAS-
style formulation and solution that incorporates human annotation as a new optimization dimension by model-
ing both its performance gain and resource cost for the DNNs. And our goal is to break the accuracy restriction
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of previous automation frameworks such as AdaDeep [38] by introducing human involvement. We showcase
H-Gen with three DNN architectures widely adopted in mobile vision applications, including CNN [30], YOLO
[48], and Faster R-CNN [49]. We elaborate on the components and workflow of H-Gen below.

3.1 H-Gen Framework
Given a pre-defined human-in-the-loop DNN (H-DNN), H-Gen optimizes its hyperparameters (network archi-
tecture, degree of human participation) as well as its parameters (weights) to achieve high performance (e.g.
accuracy) with low cost (both device resource utilization and human efforts). From a high level, H-Gen is an au-
tomatic model generation scheme that optimizes various human-in-the-loop DNNs. We briefly explain the design
space of these two elements below.
• H-DNNs. As mentioned in Section 1, H-DNNs are motivated for improved accuracy by guiding the infer-

ence on uncertain and challenging input samples (e.g. noisy samples, low-light images and small objects)
with human annotation. Given a DNN architecture, its corresponding H-DNN defines how and when to
involve human annotation as well as the supportive mechanism for human participation. As with pre-
vious HIL machine learning research [72], we utilize commercial crowdsourcing platforms e.g. Amazon
MTurk[3] as the mechanism to support human participation, which performs task generation, participant
selection, and annotation fusion. How to integrate human annotation into DNNs is architecture-specific.
In this paper, we propose feasible human annotation mechanisms for three common DNN architectures
(see Section 4.1). When to trigger human annotation is determined by the mobile application demands on
inference latency and human labour cost. This is because human crowdsourcing incurs monetary cost and
extra latency on the inference task. We determine the cost of human annotation by a unified threshold 𝜏 ,
and assess its impact on inference latency via a statistical method (see Section 5.2).
• Automatic H-DNN Generation. Given a specific H-DNN architecture, H-Gen automatically optimizes

its performance via a NAS-style hyperparameter optimization scheme in the training stage. H-Gen con-
siders a combination of model compression techniques [38] and the degree of human annotation as the
hyperparameter search space (see Section 5.1), calculates the corresponding performance and resource
metrics (see Section 5.2), and takes a two-stage reinforcement learning based optimization strategy to
generate an H-DNN (see Section 5.3). The objective is to optimize the H-DNN model’s performance (high
accuracy, low latency) under resource constraints (storage, energy, and human efforts).Then the generated
H-DNN is loaded to conduct human-in-the-loop (HIL) inference for testing on mobile devices.

3.2 H-Gen Workflow
Figure 1 illustrates the workflow ofH-Gen. For a givenH-DNN architecture (DNN and human annotationmecha-
nism),H-Gen takes user-specified performance demands (accuracy, latency) and resource constraints (platform’s
storage and energy budgets, human labour) as inputs and searches the degree of model compression and human
annotation to the H-DNN. Such that these performance metrics are optimized under resource constraints.

Formally, H-Gen focuses on the following hyperparameter optimization problem.
𝑎𝑟𝑔𝑚𝑎𝑥
𝜐∈,𝜏∈[0,1]

𝛿1𝑙𝑜𝑔(𝐴 −𝐴𝑑 ) + 𝛿2𝑙𝑜𝑔(𝑇𝑑 −𝑇 )

s.t. 𝑆 ≤ 𝑆𝑐 , 𝐸 ≤ 𝐸𝑐 , 𝐿 ≤ 𝐿𝑐 (1)
where 𝐴, 𝑇 , 𝑆 , 𝐸, and 𝐿 are the accuracy, latency, storage, energy, and the associated human labour cost of the
generated H-DNN. 𝑆 and 𝐸 are gathered in advance, and 𝐴, 𝑇 , while 𝐿 are measured based on a batch of test
data (see Section 5.2).𝐴𝑑 and𝑇𝑑 are user-specified performance requirements on accuracy and latency, while 𝑆𝑐 ,
𝐸𝑐 and 𝐿𝑐 denote the resource constraints on storage, energy, and human labour. These bounds are predefined
by users as inputs for H-Gen. H-Gen optimizes 𝐴, 𝑇 , 𝑆 , 𝐸, and 𝐿 by tuning the hyperparameters of the H-DNN,
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Fig. 1. An overview of H-Gen, which automatically generates H-DNNs with optimized performance-resource trade-off.

which includes 𝜐, model compression on the H-DNN backbone, and 𝜏 , which determines the amount of human
annotation. We use Φ to represent the corresponding search space for model compression. The search space for
human participation hyperparameter is set as 𝜏 ∈ [0, 1] (see Section 5.1 for details). 𝛿1 and 𝛿2 are coefficients to
balance 𝐴 and 𝑇 and we use 𝑙𝑜𝑔(.) for normalization, i.e., converting them to the same scale [37].

The H-DNN generated by H-Gen framework is then ready to deploy for inference. When deployed on mobile
applications for inference, the H-DNN will assess the confidence of the inference on each input sample, and
human annotation will assist in the inference on samples with low confidence (determined by the threshold 𝜏).
Specifically, these low confidence samples will be sent to the crowdsourcing platform for human annotation,
and then the feedback is sent to the model to complete the final inference. The human annotations will also
be stored in an extra human knowledge base to update the H-DNNs continuously. We discuss the concrete
implementation and usage of H-DNNs in Section 4.2.
Discussions. We make the following notes on the problem formulation of H-Gen.
• We formulate the hyperparameter tuning problem by optimizing accuracy and latency, with storage, en-

ergy and human participation as constraints because accuracy and latency are closely coupled with the
quality of service in mobile applications [14, 36, 38]. Note that human participation in HIL machine learn-
ing is typically opportunistic [7]. Therefore, we restrict the human labour cost for a batch of inferences,
i.e., the number of annotations should not exceed a predefined budget for a given batch of inference tasks.
• We advance prior DNN hyperparameter tuning formulations [36, 38] by involving human participation as

a new optimization dimension. It is a non-trivial formulation because human annotation brings improved
accuracy at the cost of extra latency and monetary overhead. Accordingly, we need novel designs on
(i) quantifying the gains and cost of human efforts for diverse H-DNNs; and (ii) searching strategies for
human efforts as a new hyperparameter.

4 H-DNN DESIGN
This section introduces the architectures of H-DNNs (Section 4.1) as well as their usage during inference and
training (Section 4.2).TheseH-DNNs are the inputs forH-Gen for further performance and resource optimization.
Note that our focus is on the automatic optimization of H-DNNs rather than the most user-friendly way for
human participation. Thus, in this work, we only propose feasible human annotation mechanisms for three
typical DNN architectures for mobile applications.
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Fig. 2. An illustration of H-CNN, where humans annotate the category of images, and the annotations are aggregated by
majority voting (see Section 4.1.1).

4.1 H-DNN Architectures
Asmentioned in Section 3.1, H-DNNs are DNNs that involve human annotation on uncertain input samples with
low inference confidence to improve the model accuracy. Accordingly, there are three questions when designing
the H-DNN for a given DNN architecture: (i) how to assess the inference confidence (i.e., uncertainty) of an input
sample to trigger human annotation; (ii) what immediate results of the DNN model to annotate; and (iii) how
to integrate the human annotation into the DNN output. We answer these questions by demonstrating feasible
H-DNN designs for three DNN architectures, CNN [30], YOLO [48], and Faster R-CNN [49], as explained below.

4.1.1 H-CNN. Convolutional neural networks (CNNs) such as LeNet [30] and VGG [52] are widely used for
various classification tasks (e.g. image, human activity, and acoustic event). A typical CNN consists of convolu-
tional, pooling, and fully connected layers. Given a CNN for image classification on 𝑘 categories, we propose
the human-in-the-loop design of CNNs, denoted as H-CNNs, by incorporating annotating the true classification
category of the input samples with low inference confidence (see Figure 2).
• Confidence Calculation.We trigger human annotation in H-CNNs using the softmax output of the last layer
(typically a fully connected layer) as the confidence metric. The probability of the output category does
not directly represent the confidence of the result, so it needs to be calibrated by Temperature Scaling [20]
during the validation phase of the model. The confidence of the final H-CNN is defined as:

𝑐𝐻−𝐶𝑁𝑁 =𝑚𝑎𝑥𝑘𝜎𝑆𝑀 (𝑧, 𝑘/T ) (2)

where 𝑐𝐻−𝐶𝑁𝑁 represents the confidence of the H-CNN inference for a sample.𝑚𝑎𝑥𝑘 means the largest
value in a 𝑘-dimensional vector. 𝑧 is the logit 𝑘-dimensional vector of the sample, i.e., the input of the
softmax layer of the model. 𝜎𝑆𝑀 is the softmax operator. T is a learnable parameter by optimizing the
cross-entropy loss function of the validation set samples.
• Human Annotation. H-CNN uses a threshold 𝜏 to determine the timing of human participation. When the

confidence 𝑐𝐻−𝐶𝑁𝑁 is lower than the threshold 𝜏 , H-CNN will revise and update the result by human
majority voting mechanism. Specifically, H-CNN sends the sample image to crowdsourcing platform and
𝑚 human participants will be selected to annotate the category of this image. Each annotation will be
mapped to a 𝑘-dimensional one-hot format vector during feedback, recorded as 𝑎𝑛𝑛𝑜𝑖 . We assume that
the human annotators are always available and ready to annotate the data timely with high quality when
requested because the crowdsourcing platform will check the participant’s status and only assign the
annotation tasks to the participants available.
• Annotation Integration. We sum the 𝑚 human annotation vectors to update the output of the H-CNN

softmax layer. Specifically, the softmax output vector of the H-CNN model is updated to 𝜎𝑆𝑀 (𝑧, 𝑘/T ) +
𝜆
∑𝑚

𝑖=1 𝑎𝑛𝑛𝑜𝑖 . 𝜆 is an adjustment factor (default as 0.1).
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Fig. 3. An illustration of H-YOLO, where humans annotate the objects that exist in each image segment, and the annotations
are aggregated by performing their union (see Section 4.1.2).

The cost per annotation is calculated by the task annotation difficulty 𝑑𝐻−𝐶𝑁𝑁 and the number of operations
𝑚 (each annotation needs only one operation in single-classification tasks). Here we utilize an estimation func-
tion [10] to predict the annotation difficulty of H-CNN. We assign 3000 samples with known ground truth for
human annotation and measure the annotation error rates to train the estimation function offline. Hence, the
human labor cost per sample 𝐿0𝐻−𝐶𝑁𝑁 is accumulated as in Eq.(3) below.

𝐿0𝐻−𝐶𝑁𝑁 = 𝑑𝐻−𝐶𝑁𝑁 ×𝑚 (3)

4.1.2 H-YOLO. YOLO is a one-stage object detectionmodel that regards the object detection task as a regression
problem of object region prediction and class prediction [48]. It divides the original image into an𝐺×𝐺 grid. Each
grid needs to predict different bounding boxes and the class probabilities, and at most, one object is predicted
in each grid. A known flaw in YOLO is its low detection rates for small objects [61]. In contrast, human vision
often recognize small objects better than neural networks even in case of disturbances [31]. We design H-YOLO
to incorporate human efforts into YOLO’s last layer (classification and regression layer) (see Figure 3).
• Confidence Calculation.We calculate the confidence 𝑐𝐻−𝑌𝑂𝐿𝑂 of the detection intermediate results (output

dimension of the classification and regression layer) for a given image. The lower the detection confidence
in a grid, the higher the probability of missing small objects, and the smaller contribution to the overall
confidence. Thereby, the confidence is defined as follows:

𝑐𝐻−𝑌𝑂𝐿𝑂 =
1

𝐺 ×𝐺

𝐺×𝐺∑
𝑖=1

I(𝑐𝑐𝑖 , 𝑐𝑟𝑖 ) (4)

where 𝑐𝑐𝑖 and 𝑐𝑟𝑖 are the classification confidence and regression confidence in each grid 𝑖 .I is an indicator
function defined by Eq.(5). When 𝑐𝑐𝑖 and 𝑐𝑟𝑖 of a grid 𝑖 are both below the threshold of 0.5, we set them as 0.
The threshold of 0.5 is empirically set to achieve a reasonably high detection accuracy (see Section 7.4.6).

I =

{
0 𝑐𝑐𝑖 < 0.5, 𝑐𝑟𝑖 < 0.5
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

• Human Annotation.H-YOLO also uses a threshold 𝜏 to determine the timing of human participation. When
the confidence 𝑐𝐻−𝑌𝑂𝐿𝑂 is lower than the threshold 𝜏 , H-YOLO uses a human segmentation aggregation
mechanism to update the intermediate results. Specifically, the input image is equally divided into 𝑚
parts, and we recruit𝑚 participants from the crowdsourcing platform for annotation. We employ the fu-
sion mechanism [56] if an object is divided and sent to two annotators. Each participant annotates the
objects that exist in the segmented image part. Each annotation is recorded as a set {𝑎𝑛𝑛𝑜1 (𝑤,ℎ, 𝑥,𝑦, 𝑐), …,
𝑎𝑛𝑛𝑜𝑛 (𝑤,ℎ, 𝑥,𝑦, 𝑐)}, where𝑤 , ℎ, 𝑥 , 𝑦 and 𝑐 are the size, position and class of the human annotated objects.
𝑛 is the number of objects annotated by each participant.
• Annotation Integration. We perform the union of the annotation sets of the𝑚 participants and then map

it to the vector format consistent with the output of the YOLO model, to update the output layer results.
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Eq.(6) shows the calculation of the human labour cost per sample for H-YOLO. Here, we estimate the annotation
difficulty 𝑑𝐻−𝑌𝑂𝐿𝑂 using a similar function, as mentioned in Section 4.1.1.

𝐿0𝐻−𝑌𝑂𝐿𝑂 =
𝑚∑
1

𝑑𝐻−𝑌𝑂𝐿𝑂 × 𝑛 𝑗 ( 𝑗 = 1, 2, ,𝑚) (6)

Note the annotation bounding-box number in a grid 𝑛 𝑗 ( 𝑗 = 1, 2, ,𝑚) varies across human participants because
each grid may contain different numbers of objects.

4.1.3 H-Faster-RCNN. Faster R-CNN [49] is a two-stage object detection model, which proposes Region Pro-
posal Network (RPN) based on fast R-CNN [19]. It first extracts the features of the image by a backbone and
then obtains the feature map. In the first stage, the feature map is passed to the RPN network to traverse pixel
by pixel using nine a priori anchors and generate the proposals by classification and regression convolutional
layers. In the second stage, the feature map of the convolutional layer is fixed as the input dimension of the
fully connected layer using ROI pooling. Finally, it maps the proposals output by RPN to the feature map of
ROI pooling for final box regression and classification. One problem in faster R-CNN is that the prior anchors
cannot well cover the multi-scale scene of objects, which are usually unevenly distributed [46]. Thus, we design
the human-in-the-loop version, H-Faster-RCNN, by exploiting humans to generate the proposals (see Figure 4).

• Confidence Calculation. In H-Faster-RCNN, we estimate the probability distribution of each localization
and classification head output using a hybrid density network [10], which explicitly exhibits the arbitrary
and epistemic uncertainty in a single forward pass of the model. Eq.(7) shows the confidence calculation.

𝑐𝐻−𝐹𝑎𝑠𝑡𝑒𝑟−𝑅𝐶𝑁𝑁 =
𝑃∑

𝑝=1

𝜋𝑝 𝑒𝜇
𝑝
𝑖∑𝑘

𝑗=0 𝑒
𝜇
𝑝
𝑗

(7)

where 𝑃 is the number of components in the hybrid density network. The mixture weight 𝜋𝑝 is the 𝑝-th
component, and the 𝜇𝑝 is the mean of GMM.
• HumanAnnotation.When 𝑐 𝑓 is lower than the threshold 𝜏 , we devise a regionmergingmechanism to guide

the inference of H-Faster-RCNN.There will be𝑚 participants from the crowdsourcing platform for annota-
tion. Specifically, each participant annotates 𝑛 attention areas of the input image where there are multiple
objects of uneven scale. Each annotation is recorded as a set {𝑎𝑛𝑛𝑜1 (𝑤,ℎ, 𝑥,𝑦), ..., 𝑎𝑛𝑛𝑜𝑛 (𝑤,ℎ, 𝑥,𝑦)}.
• Annotation Integration. Based on the feedback of human annotation, H-Faster-RCNN builds a Gaussian

mixture model (GMM) [67] to establish a probability density map of the possible locations of the target.
The calculation of the probability density map 𝐺𝑀𝑀 is shown by Eq.(8).

𝐺𝑀𝑀 =
Ω∑
𝑖=1

𝜇𝑖𝑔(𝑊,𝐻 |�̄�, ℎ̄, 𝑥,𝑦, Σ) (8)

where 𝑔(·) is the density function of each Gaussian component. 𝜇𝑖 represents the mixture weight for each
Gaussian component. �̄� , ℎ̄, 𝑥 and 𝑦 represent the mean of the size and position of the human annotation
areas, respectively. Σ is a covariance matrix of size and position of human annotation areas. The optimal
component number Ω is determined by Akaike’s Information Criterion [76]. At pixels with high probabil-
ity in GMM, we set more scale prior anchors (1:3 and 3:1 for three different anchor sizes) to better detect
objects of different scales.
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Fig. 4. An illustration of H-Faster-RCNN, where humans annotate attention areas of the input image, and the annotations
are aggregated by region merging (see Section 4.1.3).
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Fig. 5. Illustration of H-DNN in the (a) inference and (b) training phase.

The estimation method of 𝑑𝐻−𝐹𝑎𝑠𝑡𝑒𝑟−𝑅𝐶𝑁𝑁 is similar to that in Section 4.1.1. The human annotation cost per
sample is shown in Eq.(9).

𝐿0𝐻−𝐹𝑎𝑠𝑡𝑒𝑟−𝑅𝐶𝑁𝑁 =
𝑚∑
1

𝑑𝐻−𝐹𝑎𝑠𝑡𝑒𝑟−𝑅𝐶𝑁𝑁 × 𝑛 𝑗 ( 𝑗 = 1, 2, ,𝑚) (9)

Note that 𝑛 𝑗 ( 𝑗 = 1, 2, ,𝑚) is different for each human because each participant focuses on different areas.
Note that we showcase these three human-in-the-loop deep models (i.e.,, H-CNN, H-YOLO, H-Faster RCNN)

to verify the effectiveness of our H-Gen framework. Designing optimal structures of these three specific models
is not the primary focus of our work.

4.2 H-DNN Inference and Training
We now briefly discuss how to use the three H-DNN architectures for inference as well as their training.

4.2.1 H-DNN Inference. The usage of H-DNNs during inference is the same as the original DNNs, except that
human annotation is triggered and integrated into the model in case of a low confidence in inference. Participa-
tion in the inference stage is because human-annotated soft labels can help improve the detection accuracy of
DNNs in challenging scenarios since humans can capture more detailed information. Also, note that we assume
pool-based data processing. That is, the generated H-DNNwill perform inference on batches of data, and human
annotations are only necessary for a small portion of each batch during the inference. As shown in Figure 5a, if
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Fig. 6. H-Gen’s search space design.

the confidence of the intermediate result is lower than a pre-defined threshold during inference, relevant data
are sent for human annotation, which are used to correct and update the final output of the H-DNN.

Human annotation is implemented by three crowdsourcing task types: majority voting for H-CNN (see Sec-
tion 4.1.1), segmentation aggregation for H-YOLO (see Section 4.1.2), and region merging for H-Faster-RCNN (see
Section 4.1.3). We use WeSense [39] to manage the crowdsourcing tasks.

4.2.2 H-DNN Training. The training of H-DNNs differs from that of the original DNNs. It includes two stages.
The first stage is the standard DNN training with the original training data. The second stage is the enhance-
ment training stage. The human does not directly participate in the H-DNN’s training stage. We utilize human
annotations collected by human-in-the-loop inference as an extra knowledge base to guide the enhancement
training of H-DNNs in a knowledge distillation manner, as in Figure 5b. In addition, we apply an AutoEncoder
[45] to compare the feature distributions of the newly added human-annotated data with the dataset and filter
the useless human-annotated samples in the enhancement training stage.

Specifically, for H-CNN and H-YOLO, since human annotations are stored in the form of results, we map the
human-annotated data to a vector form corresponding to the model’s output and train the model with the loss
function of the high-temperature distillation process. For H-Faster-RCNN, since human annotations are stored
in the form of attention area, we use the k-means++ clustering algorithm to complete the initialization of GMM
on the human knowledge base and optimize the parameters through the EM [68] algorithm.

5 AUTOMATIC H-DNN OPTIMIZATION
This section presents H-Gen, an automatic hyperparameter optimization solution for H-DNNs. H-Gen is a NAS-
style model compression framework that optimizes the performance (accuracy, latency) and the resource (stor-
age, energy, and human labour cost) of H-DNNs (see Eq.(1)). As next, we discuss the search space (Section 5.1),
metric calculation (Section 5.2), and search strategy (Section 5.3) in sequel.

5.1 Search Space
The search space of H-Gen consists of two categories of hyperparameters: model compression and human labor.
As shown in Figure 6.

5.1.1 Hyperparameters of Compression Techniques. Model compression is a prevailing strategy to reduce the
resource overhead of DNNs without notably compromising accuracy [12]. We follow prior studies [36] to search
for the best compression technique combination for H-DNN generation because research [36, 38] showed that
synergistic combination of multiple compression techniques may deliver better performance-resource trade-off.
In H-Gen, we consider individual compression techniques as basic operations, and search for the best compres-
sion technique combination for each layer of a given H-DNN. For fair comparison, we integrate the same sets of
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compression techniques as [36], which includes six compression techniques for convolutional (𝑐𝑜𝑛𝑣) layers and
three for fully connected (𝑓 𝑐) layers. H-Gen is a generic framework that can easily integrate other compression
techniques. An exhausted inclusion of compression techniques is out of the scope of our work.

Specifically, the six compression techniques for 𝑐𝑜𝑛𝑣 layers are:
• 𝑜1𝑐 : decompose 𝑐𝑜𝑛𝑣 layers using convolution kernel sparse decomposition [33].
• 𝑜2𝑐 : replace the 𝑐𝑜𝑛𝑣 layers with depth-wise separable convolution [25].
• 𝑜3𝑐 : decompose 𝑐𝑜𝑛𝑣 layers using sparse random technique [9].
• 𝑜4𝑐 : replace 𝑐𝑜𝑛𝑣 with a Fire layer [26].
• 𝑜5𝑐 : replace 𝑐𝑜𝑛𝑣 with a Mlpconv [32].
• 𝑜6𝑐 : decompose the weight matrix of the 𝑐𝑜𝑛𝑣 using the SVD [29].

The three compression techniques for 𝑓 𝑐 layers are:
• 𝑜1

𝑓
: replace the 𝑓 𝑐 layers with a global average pooling layer [32].

• 𝑜2
𝑓
: decompose the weight matrix of the 𝑓 𝑐 using the SVD [29].

• 𝑜3
𝑓
: decompose the weight matrix of the 𝑓 𝑐 using sparse-coding [6].

We define a discrete search space Φ = O𝑖
𝑐 ⊗O

𝑗
𝑓
(see Eq.(1)) for the model compression techniques combination,

where ⊗means combination of compression techniques in different DNN layers. As an example, for a three-layer
DNN (𝑐𝑜𝑛𝑣1, 𝑐𝑜𝑛𝑣2, 𝑓 𝑐), there will be 6 × 6 × 3 combinations of compression techniques.

5.1.2 Hyperparameters of Human Labour. One unique feature of H-Gen is the modeling of human labour as a
new dimension of themodel generation procedure. Recall that human annotation is triggered if the inference con-
fidence (𝑐𝐻−𝐶𝑁𝑁 , 𝑐𝐻−𝑌𝑂𝐿𝑂 and 𝑐𝐻−𝐹𝑎𝑠𝑡𝑒𝑟−𝑅𝐶𝑁𝑁 for H-CNN, H-YOLO, and H-Faster-RCNN, respectively) lower
than a confidence threshold 𝜏 (see Section 4.1). Hence, it is natural to take the confidence threshold 𝜏 as the hy-
perparameter for human labour cost. This is reasonable because the lower confidence the inference is, the more
human labour is involved in the model inference, which leads to longer average latency and higher monetary
cost. Therefore, the confidence threshold determines the degree of human participation. InH-Gen, we normalize
the value of threshold 𝜏 to a continuous real number space [0, 1].

5.2 Metric Calculation
In this subsection, we explain how to calculate the various performance and resource metrics of H-DNNs, which
include accuracy 𝐴, latency 𝑇 , storage 𝑆 , energy 𝐸, and human labour 𝐿. The hyperparameters of compression
combination 𝜐 affect accuracy, latency, storage and energy. The human effort hyperparameter 𝜏 affects accuracy,
latency and labour cost of the H-DNN. We assess human effort based on statistical methods and calculate the
other metrics with the state-of-the-art models [36, 38].

5.2.1 Accuracy 𝐴. We directly measure the accuracy of a given H-CNN on a batch of test data. Similarly, we
use the mean Average Precision (mAP) [49] in the test data as the accuracy for H-YOLO and H-Faster-RCNN.

5.2.2 Latency 𝑇 . The latency of a given H-DNN consists of the time cost of DNN inference as well as that
introduced by human participation (data transmission, crowdsourcing platform operation, human annotation,
and feedback). We compute the average latency of all samples because H-DNN focuses on processing pool-based
data. We calculate the latency of an H-DNN as follows:

𝑇 = 𝑇𝑖𝑛𝑓 𝑒𝑟 +
1
M𝑇𝑒𝑥𝑡𝑟𝑎 (10)

where𝑇𝑖𝑛𝑓 𝑒𝑟 is the DNN inference time, which can be estimated as the sum of the delays of both the conv and fc
layers [63].The second term 1

M𝑇𝑒𝑥𝑡𝑟𝑎 is the average extra latency incurred by human participation in a test batch
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with sizeM. 𝑇𝑒𝑥𝑡𝑟𝑎 is the sum of extra latency incurred by human participation in a test batch, (determined by
the samples to be annotated under the threshold 𝜏 and the time cost per sample).

5.2.3 Storage 𝑆 . We apply the storage model in [38] to calculate the storage of a given H-DNN. Specifically, the
storage 𝑆 is derived by the total number of bits of activations and weights of all layers, as shown in Eq.(11):

𝑆 = S𝑓 + S𝑝 = 𝐵𝑎 × S𝑎 + 𝐵𝑤 × S𝑤 (11)
where S𝑓 and S𝑝 are the storage for the activations and weights. 𝐵𝑎 and 𝐵𝑤 are the number of bits per activation
andweight of the DNNduring execution (e.g. 32 in Tensorflow).S𝑎 andS𝑤 denote the total number of activations
and weights in all layers in the DNN.

5.2.4 Energy 𝐸. We combine the energy model in [38] and [63] to estimate the energy consumption of a given
H-DNN. The energy cost 𝐸 mainly comes the calculations in the DNN and the memory accesses, which can be
estimated as follows.

𝐸 = 𝜂 ·𝑀𝐴𝐶𝑠 + 200 · 𝜂 · S𝑓 + 6 · 𝜂 · S𝑝 (12)
where 𝑀𝐴𝐶𝑠 is the number of multiply-accumulate (MAC) operations and 𝜂 is the energy cost per MAC (52.8
PJ in mainstream mobile devices [38]). S𝑓 and S𝑝 are the storage for the activations and weights as in Eq.(11).
Empirical studies [63] show that the energy costs to access activations and weights are roughly 200× and 6× of
𝜂, if activations are stored in DRAM while weights in cache.

5.2.5 Human Labour 𝐿. We calculate the labor cost as the ratio between the sum of the actual feedback costs
and the maximum acceptable feedback cost in a batch, i.e., the degree of human involvement:

𝐿 =
𝐿𝑎𝑐𝑡𝑢𝑎𝑙
𝐿𝑚𝑎𝑥

(13)

where 𝐿𝑎𝑐𝑡𝑢𝑎𝑙 is the labor cost actually consumed in a batch inference, determined by the actual number 𝑁 of
sample be annotated in a batch (affacted by the hyperparameter 𝜏) and the human labor cost per sample (defined
by Eq.(3), Eq.(6) and Eq.(9)). 𝐿𝑚𝑎𝑥 is the maximum acceptable annotation cost in a batch, which is determined
by the batch size, the maximum allowable number of participants per inference (default is 4), and the maximum
number of operations per feedback (3 by default). Therefore, the human labour 𝐿 for H-CNN, H-YOLO, and H-
Faster-RCNN model is 𝐿𝐻−𝐶𝑁𝑁 =

𝑁 ∗𝐿0𝐻−𝐶𝑁𝑁
𝐿𝑚𝑎𝑥

, 𝐿𝐻−𝑌𝑂𝐿𝑂 =
𝑁 ∗𝐿0𝐻−𝑌𝑂𝐿𝑂

𝐿𝑚𝑎𝑥
, and 𝐿𝐻−𝐹𝑎𝑠𝑡𝑒𝑟−𝑅𝐶𝑁𝑁 =

𝑁 ∗𝐿0𝐻−𝐹𝑎𝑠𝑡𝑒𝑟−𝑅𝐶𝑁𝑁
𝐿𝑚𝑎𝑥

,
respectively. Note that 𝐿 = 0 means no human participation, and 𝐿 = 1 implies that allM inputs in a batch
require human involvement with maximum acceptable annotation cost per sample.

5.3 Search Strategy
Given the search space defined in Section 5.1, H-Gen adopts a two-stage strategy to search the hyperparameters
for the optimization problem defined in Eq.(1). Specifically, H-Gen alternately selects the compression technol-
ogy combination hyperparameters to build the DNN backbone architecture, and then determines the human
labour hyperparameter based on the backbone architecture. The two-stage optimization decouples the inter-
vened impact of two hyperparameter types and we apply deep reinforcement learning to effectively optimize
the hyperparameters. Algorithm 1 illustrates the two-stage optimization workflow. It adopts the dueling DQN
to select compression combination hyperparameters in the first stage. And it uses DDPG to select human labor
hyperparameters in the second stage, as explained in detail below.

5.3.1 DQN for Compression Combination Hyperparameter. We adopt a deep Q-network (DQN) [43] to optimize
the compression combination hyperparameter 𝜐 from a discrete search space. Inspired by [55], we utilize a DQN
agent to compress the DNN in a layer-wise manner. The elements of the corresponding DQN in our problem
context are defined as follows.
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Algorithm 1: Two-stage Optimization for H-DNN generation
Input: (𝐴𝑑 ,𝑇𝑑 , 𝑆𝑐 , 𝐸𝑐 , 𝐿𝑐 ) , H-DNN architecture, Dateset
Output: H-DNN with optimized configuration (architecture and amount of human labour) and trained weights

1 Initialize 𝐷𝑄𝑁 , 𝐷𝐷𝑃𝐺 , H-DNN
2 for episode = 1→ 1000 do
3 Stage One:
4 while layer 𝑙 is not the last layer in DNN do
5 𝑠𝑙 ← 𝐷𝑁𝑁 .𝑙𝑎𝑦𝑒𝑟𝑙 .𝑖𝑛𝑓 𝑜
6 select an action 𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄 (𝑠𝑙 , 𝑎𝑙 ;𝜔 )
7 compress the layer by 𝑎𝑡
8 𝑙++;
9 end

10 calculate the metrics 𝐸, 𝑆 with compressed DNN architecture
11 Stage Two:
12 train the compressed H-DNN on dataset and human knowledge base
13 𝑠′𝑖 ← 𝐷𝑁𝑁 .𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛.𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛
14 select 𝑎𝑖 from O′ at 𝑠𝑖 by 𝑎𝑐𝑡𝑜𝑟 with noise
15 forward the H-DNN
16 calculate the metrics𝐴,𝑇 , 𝐸, 𝑆, 𝐿 to compute Reward 𝑅1𝑖 , 𝑅2𝑖 .
17 broadcast 𝑅1𝑖 , 𝑅𝑖 to be the reward all of 𝑠𝑙 and 𝑠′𝑖
18 sample random minibatch of transitions from experience memory
19 update 𝐷𝑄𝑁 and 𝐷𝐷𝑃𝐺 via learning step
20 every 𝑛𝑢𝑚 reset target network of 𝐷𝑄𝑁 and 𝐷𝐷𝑃𝐺
21 episode++
22 if 𝐴,𝑇 , 𝐸, 𝑆, 𝐿 satisfy user demand then
23 break
24 end
25 end

• State: We define state 𝑠𝑙 = {𝑙, ℎ𝑙 ,𝑤𝑙 , 𝑐𝑙 }, where 𝑙 is the layer index, and ℎ𝑙 , 𝑤𝑡 , 𝑐𝑙 represent the height,
width, and channels of input features to layer 𝑙 , respectively. For one-dimensional input features to 𝑓 𝑐
layer,𝑤𝑙 = 1 and 𝑐𝑙 = 1.
• Action: For each layer 𝑙 , action 𝑜𝑙 ∈ O is defined as the optional compression technology in layer 𝑙 , where
O is the set of compression techniques in Section 5.1.1.
• Reward: Following [38], we convert the original constrained optimization problem in Eq.(1) into an un-

constrained one as a dueling DQN. Maximizing Eq.(1) by DQN can cause ambiguity (as mentioned in
AdaDeep), so we adopt the dueling DQN to separate the state-action value function and the state-action
advantage function into two parallel streams to better separate constraints and goals. We define the final
reward as the sum of the following two parts (i.e., objective gain 𝑅1 and constraint satisfaction 𝑅2):

𝑅1 = 𝛿1𝑙𝑜𝑔(𝐴 −𝐴𝑑 ) + 𝛿2𝑙𝑜𝑔(𝑇𝑑 −𝑇 ) (14)
𝑅2 = 𝛿3𝑙𝑜𝑔(𝐸𝑐 − 𝐸) + 𝛿4𝑙𝑜𝑔(𝑆𝑐 − 𝑆) + 𝛿5𝑙𝑜𝑔(𝐿𝑐 − 𝐿) (15)

where, 𝛿3, 𝛿4, and 𝛿5 are the coefficients for the weighted summation of three constraints.
The agent receives a state 𝑠𝑙 for each layer 𝑙 and then outputs an optimal action 𝑜𝑙 , i.e., the selected compression
technique in layer 𝑙 . Then it searches for the next layer, receiving new states 𝑠𝑙+1 until all layers have been
explored. Afterwards, we train the DNN on the input dataset, calculate its metrics as the global reward 𝑅1𝑖
and 𝑅2𝑖 , and finally return it to the agent. As a separate note, once the constraints 𝑅2 are satisfied, the optimal
performance object 𝑅1 is the most critical goal in picking a sole solution during the search process.

The parameter weights𝜔 of dueling DQN [57] is trained by iteratively minimizing the loss function as follows:

𝑙𝑜𝑠𝑠𝐷𝑄𝑁 = E𝑠𝑖 .𝑎𝑖 ,𝑟 ,𝑠𝑖+1
[
(𝑄𝐷𝑄𝑁 −𝑄 (𝑠, 𝑎;𝜔))2

]
(16)
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where 𝑄𝐷𝑄𝑁 = 𝑅1𝑖 + 𝑅2𝑖 + 𝛾 𝑚𝑎𝑥
𝑎𝑖+1

𝑄 (𝑠𝑖+1, 𝑎𝑖+1;𝜔);𝜔−) is the target for the current iteration 𝑖 . Note that 𝜔 of
dueling DQN represent share 𝑐𝑜𝑛𝑣 layers and two streams of 𝑓 𝑐 layers. 𝛾 is decay factor for future rewards (0.01
by default). We use stochastic gradient descent to optimize this function. During the optimization process, we
choose a maximum Q-value action by 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy and a random action by probability 1− 𝜀 and store the
agent’s experiences in memory.

5.3.2 DDPG for Human Labor Hyperparameters. After training the weights of the compressed DNN, we explore
the human participation threshold 𝜏 for the optimal performance of H-DNN in the second stage. Since deep
deterministic policy gradient (DDPG) performs well in solving continuous control problems and can be jointly
trained end-to-end with DQN, we adopt it to optimize the human effort hyperparameter. It follows an actor-critic
framework to concurrently learn the actor network and the value-based critic network. The actor network gets
advice from the critic network that helps the actor network decide which actions to reinforce during training.
Meanwhile, the DDPG makes uses of actor networks and critic networks to improve the stability and efficiency
of training. The relevant elements are defined as follows.
• State: The compression combination hyperparameter of the compression technique selected by DQN.
• Action: O′ ∼ [0, 1] is a space of real numbers representing the range of human participation threshold.
• Reward: It is same as DQN as defined in Eq.(14).

DDPG observes a compression combination hyperparameter state 𝑠′𝑖 , and leverages the DDPG’s predict actor
network to estimate the deterministic optimal action 𝑜 ′𝑖 with truncated normal distribution noise [22]. To train
such a DDPG optimizer with the parameters 𝜔𝑎𝑐𝑡𝑜𝑟 and 𝜔𝑐𝑟𝑖𝑡𝑖𝑐 , we optimize the actor network at iteration 𝑖 by
the policy gradient [51]. And we train the critic network by optimizing the loss function 𝑙𝑜𝑠𝑠 from both the
random replay memory and the output of the actor and the critic networks:

𝑦𝑖 = 𝑅1𝑖 + 𝑅2𝑖 + 𝛾𝑄 (𝑠𝑖+1, 𝐴𝐷𝐷𝑃𝐺 (𝑠′𝑖+1; �̄�𝑎𝑐𝑡𝑜𝑟 )) (17)

𝑙𝑜𝑠𝑠𝐷𝐷𝑃𝐺 =
1

𝑁𝑏𝑎𝑡𝑐ℎ

∑
𝑖

(𝑦𝑖 −𝑄𝐷𝐷𝑃𝐺 (𝑠′𝑖 , 𝑜 ′𝑖 ;𝜔𝑐𝑟𝑖𝑡𝑖𝑐 ))2 (18)

where 𝑁𝑏𝑎𝑡𝑐ℎ is the minibatch size of transitions.𝑦𝑖 is computed by the sum of immediate reward 𝑅1𝑖 and 𝑅2𝑖 and
the outputs of the frozen actor and critic. We initialize the replay memory with 10000 historical transitions. 𝑠 is
the compression combination hyperparameters selected by duelingDQN.𝑎 is the selective action in state 𝑠 , which
is a space of real numbers representing the range of the human participation threshold 𝜏 . 𝑟 is the reward, the
sum of the objective gain 𝑅1 and constraint satisfaction 𝑅2. 𝑠′ is the compression combination hyperparameters
selected by the dueling DQN in the next iteration. During the search process, we sample a random mini-batch
(default as 32) of transitions from the replay memory to update the agent parameters, breaking the correlation
of the transition sequence and achieving faster convergence.

6 IMPLEMENTATION
We implement the H-Gen’s framework for H-DNN model generation with Tensorflow and Keras in Python. The
implementation of H-Gen consists of server side and mobile application side, as shown in Figure 7.
• The server side realizes the automatic generation of optimized H-DNN and themodel’s training.The server

connected to mobile applications and crowdsourcing platform by Socket, and maintain a human knowl-
edge base by NoSQL. The server side is hosted on a server with the Intel i9-10900K 3.70GHz CPU and
NVIDIA GTX 3090Ti GPU.
• For the mobile application side, during the inference phase of the generated H-DNNs, we implement the

human-in-the-loop inference with TensorFlow Lite in JAVA as Android apps on the mobile platforms.They
exchange intermediate data using JAVA Socket. Human participation for annotation (i.e., crowdsourcing)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 36. Publication date: March 2023.



36:16 • Wang et al.

Mobile Application (H-DNN)

Challenging 
sample

OutputH-Gen

Server (H-GEN)

Optimized 
H-DNN

Raspberry Pi
with micro camera

H-DNN

Crowdsourcing platform

WeSense

In
te

rfa
ce

WeSense

Human Annotation
Knowledge 

base

Fig. 7. The implementation of H-Gen.

Table 1. Dataset overview.

NO. Type (Challenging) tasks Datasets Description (Sample number in training/test/class number)
D1

Classification

Digit MNIST 60,000 images with the shape of 28×28 (55,000/10,000/10)
D2 Noisy digit Noisy MNIST 60,000 images processed with Gaussian noise (55,000/10,000/10)
D3 Cloth FashionMNIST 60,000 images with the shape of 28×28 (55,000/10,000/10)
D4 Noisy cloth Noisy FashionMNIST 60,000 images processed with Gaussian noise (55,000/10,000/10)
D5 Low-resolution cloth Low-resolution FashionMNIST 60,000 images re-scaled by bilinear sampling (55,000/10,000/10)
D6

Object
detection

Small object VisDrone-DET2019 2,000 images randomly selected (1,600/400/10)
D7 Low-light object ExDark 2,000 low-light images randomly selected (1,600/400/12)
D8 Camouflaged object COD-10k 2,000 images randomly selected (1,600/400/20)
D9 Motion-blur object ImageNet VID 2,000 images randomly selected (1,600/400/20)
D10 Infrared object FLIR Thermal dataset 10,288 infrared images (8,862/1,366/15)
D11 Low-resolution object Low-resolution VOC dataset 9,953 images processed with Gaussian noise (5,001/4,952/20)
D12 Noisy object Noisy VOC dataset 9,953 images re-scaled by bilinear sampling (5,001/4,952/20)

is implemented and managed by the AmazonMTurk, which supports task generation and participant man-
agement. And the human-machine interaction is implemented in a self-developed mobile APP, WeSense.

H-Genworks as follows.WhenH-Gen performsH-DNNgeneration, it iteratively selects hyperparameters (i.e.,
actions) and controls the training and inference of H-DNNs. For the training of H-DNNs, the training dataset
and human knowledge base (initialized with 5% of the public dataset) are used in each iteration because their
labels are in the same form. During inference, human participants will be involved. The data annotated in the
inference phase are sent to the crowdsourcing platform to publish crowdsourcing tasks. Human participants
accept crowdsourcing tasks through a self-developedAPPWeSense [39] to complete the annotation and feedback
to the server-side. These annotations help the model in inference and accuracy calculations when updating
the human knowledge base. When new human knowledge accumulates to a preset threshold(e.g. 200 for H-
CNN, 1000 for H-YOLO, and 1000 for H-Faster RCNN), H-Gen will retrain H-DNNs. H-Gen will use new labeled
data to fine-tune H-DNN weights and update the new H-DNN to mobile devices. We assign different incentive
levels (e.g. 2,4,6) for each crowd response according to various annotation tasks. We count the extra latency
from intermediate data generation and uploading for task release and annotation feedback to the completion of
inference. Then we calculate the average inference latency based on the number of samples and the statistics of
the extra latency introduced by human feedback.

7 EVALUATION

7.1 Experimental Setups
7.1.1 Challenging Tasks and Datasets. Table 1 summarizes the datasets used in our evaluation. As mentioned in
Section 4, we showcase H-Gen with two machine learning tasks, i.e., classification, and object detection on the
following twelve challenging (i.e., 𝐷2, 𝐷4, 𝐷5, 𝑎𝑛𝑑𝐷6 ∼ 𝐷12) and standard (i.e., 𝐷1, 𝐷3) tasks.
• For classification tasks and the corresponding H-CNN architecture, we adopt five datasets: the public

digit recognition dataset MNIST (D1), the MNIST with artificially added Gaussian noises with variance
0.2 (D2), the public cloth classification dataset FashionMNIST (D3), FashionMNIST added with artificially
added Gaussian noises variance 0.2 (D4), and FashionMNIST with low resolution to a quarter re-scaled by
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Table 2. Performance comparison between AdaDeep and H-Gen for different model architectures.

Mobile tasks Original DNNs Frameworks Performance of the generated H-DNN
A(%) T(ms) E(mJ) S(MB) Labor Cost(%)

Classification CNN (LeNet)
Origin (Baseline) 82.1 22.3 2.4 26.1 ——
AdaDeep(Baseline) 81.5 17.8 1.7 1.6 ——

H-Gen 89.4 28.3 1.5 1.4 2.1

Object Detection

YOLO (v1)
Origin (Baseline) 35.1 702.1 330.7 1640.8 ——

AdaDeep (Baseline) 34.2 320.4 260.1 253.7 ——
H-Gen 38.6 375.8 197.3 231.6 2.9

Faster RCNN (VGG backbone)
Origin (Baseline) 39.2 836.3 420.6 1730.5 ——

AdaDeep (Baseline) 37.8 504.7 321.5 442.2 ——
H-Gen 42.4 497.3 301.2 351.7 1.7

bilinear sampling (D5). Here, we artificially add noises to simulate the impact of sensor noise caused by
poor lighting or high temperature in real-world mobile applications.
• For object detection tasks and the corresponding H-DNN architectures, i.e., H-YOLO and H-Faster-RCNN,
we employ seven datasets, which represent several challenging object recognition scenarios, including
small object detection (D6: Visdrone), low-light object detection (D7: Exclusively Dark), camouflaged ob-
ject detection (D8:COD-10k), motion blur object detection (D9: ImageNet VID), thermal object detection
(D10:FLIR Thermal), low-resolution object detection (D11: low-resolution VOC), and noisy object detec-
tion (D12: noisy VOC). We downscale the original images to a quarter pixel and use bilinear sampling to
rescale them to the original size for generating the low-resolution vision of VOC datasets [17]. We add the
Gaussian noise with a variance of 0.2 to VOC images to generate the noisy VOC (D12).

We use LeNet [30], YOLOv1 (VGG16 backbone network) [48], and Faster RCNN (VGG16 backbone network) [49],
as the origin architectures for H-CNN, H-YOLO, and H-Faster-RCNN, respectively, to input into H-Gen for
automatic model generation and optimization.

7.1.2 Mobile and Embedded Platforms. We experiment with three mobile and embedded platforms, i.e., Ming-
Dong smartwatch (Device 1), Huawei P20 (Device 2), and Raspberry Pi 4B (Device 3).They have various resource
constraints. Specifically, the MingDong X361 is equipped with Cortex-A7 processor, 3G DRAM, 1MB L2-Cache
and 1000mA battery. The Huawei P20 has a Kirin 970 processor, 6G DRAM, 2MB L2-Cache, and 3400mA battery,
and the Raspberry Pi 4B has the Cortex-A72 processor, 8G DRAM, 2MB L2-Cache, and 3800mA battery.

7.1.3 Comparison Baseline. We adopt three original DNNs (see § 7.1.1) and nine compression techniques (see
§ 5.1.1) as baselines for performance (accuracy, latency, energy, storage) comparison. In addition, we compare
H-Gen with AdaDeep [36, 38], an automated DNN generation and compression framework with diverse user-
specified mobile application performance requirements (e.g. accuracy, latency) and mobile platform-imposed
resource constraints (e.g. computation, storage, and energy budgets). By comparing with it, we show how H-
Gen break the accuracy restriction by introducing human involvement, which improves the accuracy of the
uncompressed model in case of challenging input samples.

7.2 Overall Performance Comparison with Baselines
7.2.1 Performance Comparison for Different Model Architectures. We compare the performance of different mod-
els generated by AdaDeep andH-Gen (𝐿𝑐 is set to 3.0%) for a specific mobile device (Device 2). We selected three
original DNNs and three AdaDeep-optimized DNNs as the baseline for the experiments in this section. For
classification tasks, we use LeNet on D5. For object detection tasks, we use YOLOv1 and Faster RCNN (VGG16
backbone) on D6. We choose the same 𝑐𝑜𝑛𝑣 and 𝑓 𝑐 layers as their compression space for a fair comparison.
Specifically, we select the compression technique of CNN layer by layer. For YOLOv1 and Faster RCNN, whose

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 36. Publication date: March 2023.



36:18 • Wang et al.

1 2 3
80

85

90

95

Ac
cu
ra
cy
(%

)

Devices

CNN(Origin)
CNN(AdaDeep)
H-CNN(H-Gen)

(a) Accuracy

1 2 3
10
15
20
25
30
35
40
45

La
te
nc
y(
m
s)

Devices

CNN(Origin)
CNN(AdaDeep)
H-CNN(H-Gen)

(b) Latency

1 2 3
0

1

2

3

4

5

En
er
gy
(m
J)

Devices

CNN(Origin)
CNN(AdaDeep)
H-CNN(H-Gen)

(c) Energy

1 2 3
0

10

20

30

40

50

St
or
ag
e(
M
B)

Devices

CNN(Origin)
CNN(AdaDeep)
H-CNN(H-Gen)

(d) Storage

Fig. 8. Performance comparison over different mobile devices.

backbone consists of 5 blocks (block1-5), we skip the first conv layer of each block to preserve more feature in-
formation. Table 2 shows the experimental results. First, compare to origin DNNs, for different tasks and models,
H-DNNs generated byH-Gen improve accuracy by 3.2% ∼ 7.3%, and reduce storage by 24.7 ∼ 1378.8𝑀𝐵, latency
by −6.0 ∼ 381.7𝑚𝑠 , energy cost by 0.9 ∼ 133.4𝑚𝐽 with labor cost 1.7% ∼ 2.1%. Second, compare to AdaDeep,
H-DNNs generated byH-Gen improve accuracy by 4.4% ∼ 7.9%, and reduce storage by 0.2 ∼ 90.5𝑀𝐵 and energy
cost by 0.2 ∼ 62.8𝑚𝐽 with extra latency −7.4 ∼ 55.4𝑚𝑠 . H-Gen takes 1.5 hours to generate H-CNN, 6 hours to
generate H-YOLO, and 8 hours to generate H-Faster-RCNN, respectively, on a server with the Intel i9-10900K
3.70GHz CPU and NVIDIA GTX 3090Ti GPU. In summery, H-Gen achieves the best overall trade-off between
inference accuracy, energy cost, and storage for different models with little labor cost and extra latency. This is
because the involved human intelligence in H-Gen pushes the DNN’s accuracy-resource trade-off limit.

7.2.2 Performance Comparison over Different Mobile Devices. We compare the performance of AdaDeep and
H-Gen to generate a specific deep model (CNN) for different mobile devices (Device 1-3). In this thread of exper-
iments, we perform H-CNN generation on low-resolution classification task (D5) based on LeNet. And the labor
budget 𝐿𝑐 is set as 3.0%. Figure 8 shows the results. First, compared with AdaDeep, which loses 0.9% ∼ 1.9%
accuracy on different devices, H-Gen can improve the accuracy of the original DNN by 1.8% ∼ 3.3% with hu-
man labor. Second, compared to the original DNN, H-Gen can reduce 0.7 ∼ 1.0𝑚𝐽 energy consumption and
17.9 ∼ 24.4𝑀𝐵 storage and achieve similar effects on energy and storage to AdaDeep on different devices. It is
worth mentioning that H-Gen achieves a better resource trade-off on most devices (Device 1-2). Third, due to
the human labor in DNN inference, H-CNN generated byH-Genwill introduce 1.5 ∼ 8.5𝑚𝑠 extra latency, which
is acceptable. The batch size in this experiment is 10,000, where 21 samples are sent for human annotations, and
the average latency is 29.4ms, in which the extra human annotation latency is 8.5ms. In summary, H-Gen can
achieve higher accuracy under different device resource constraints, compared with the baselines.

7.2.3 Performance Comparison on Practical Challenging Tasks. We compare the performance of AdaDeep and
H-Gen to generate DNNs for different challenging tasks (on Device 3). For classification tasks, we conduct exper-
iments on D2 (H-CNN), and for object detection tasks, we conduct experiments on D7 (H-YOLO), D9 (H-YOLO),
and D12 (H-Faster RCNN). Figure 9 shows the experimental results. First, compared with AdaDeep, which loses
1.2% ∼ 2.9% accuracy on all tasks, H-Gen can improve the accuracy by 2.7% ∼ 5.1% with human labor. Second,
for different tasks, H-Gen achieves similar energy and parameter size reductions to AdaDeep. Third, for the ob-
ject detection tasks, although the latency of H-DNN is slightly higher than the model generated by AdaDeep, it
is still significantly reduced for the original DNN. In summary, H-Gen yields the highest accuracy for different
tasks, especially on challenging input samples, while satisfying the device resource constraints.
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Fig. 9. Performance comparison on practical challenging tasks.

7.2.4 Performance Comparison on Compression Performance. We experiment to illustrate the impact of human-
annotated soft labels on compression technique choice and compression performance (i.e., accuracy 𝐴, latency
𝑇 , energy 𝐸, and storage 𝑆). Specifically, we compare the model performance generated by AdaDeep (without
human-annotated soft labels) and H-Gen (with human-annotated soft labels) to satisfy the ≥ 90% accuracy
demands on task D4. Both of them satisfy the accuracy requirement. However, H-Gen reduces (improves) the
generated H-CNN’s energy cost by 0.9𝑚𝐽 (39%), and storage by 7.3𝑀𝐵 (80%), compared with AdaDeep. This
shows that the accuracy gain brought by human annotation in H-Gen can balance the accuracy loss caused by
model compression, thereby improving the overall compression performance.

Table 3. Performance comparison of CNN generated by AdaDeep and H-Gen with ≥ 90% accuracy demands.

Framework Compression combination A(%) T(ms) E(mJ) S(MB)
AdaDeep (without human participation) 𝑜𝑐1 + 𝑜

𝑓
1 90.1% 21.3 2.3 9.1

H-Gen (with human participation) 𝑜𝑐4 + 𝑜
𝑓
2 90.4% 35.3 1.4 1.8

7.3 A Closer Look at H-DNNs Generated by H-Gen
7.3.1 H-DNNs with Different Performance Requirements. This experiment evaluatesH-Genwith different object
detection challenging tasks (and thus diverse performance requirements) under a fixed human labor budget 6%
for Device 3, using H-YOLO and H-Faster-RCNN. We define 𝛿3 ∼ 𝛿5 = 0.3, 0.3, 0.4 of Eq.(14). Table 4 shows
the details and the performance of H-YOLO and H-Faster-RCNN generated by H-Gen. First, compared with
the origin YOLO, H-YOLO generated by H-Gen in different tasks can improve accuracy by 0.6% ∼ 5.3% and
reduce parameter size by 4.3× ∼ 12.4×, latency by 1.3× ∼ 2.9×, energy cost by 1.1× ∼ 2.8× with labor cost
0.8% ∼ 4.1%. Second, compared with the origin Faster RCNN, the H-Faster-RCNN generated by H-Gen can
improve accuracy by 1.1% ∼ 4.7% and reduce parameter size by 3.2× ∼ 10.8×, energy cost by 1.1× ∼ 1.7× with
labor cost 0.6% ∼ 4.4%. In conclusion,H-Gen can improve accuracy and reduce latency by tuning H-DNNmodel
hyperparameters in various tasks.

7.3.2 H-DNNs with Different Platform Resource Constraints. This experiment evaluates H-Gen with different
mobile devices (and thus platform-imposed resource constraints) under a fixed human labor budget 𝐿𝑐 = 3%,
using H-CNN and FashionMNIST (D3) as the model and dataset. Different mobile devices affect 𝛿3 ∼ 𝛿5 of Eq.(14).
Under fixed human labour budget 𝐿𝑐 = 3%, 𝛿5 = 0.1−𝐿𝑐

0.1 . 𝛿4 =𝑚𝑎𝑥{ 3800−𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦3800 , 0.5} ∗ (1−𝛿5), and 𝛿3 = 1−𝛿4−𝛿5.
Table 5 shows the performance of H-CNN generated by H-Gen. First, compared with the origin CNN (𝐴 =
90.4%,𝑇 = 22.3𝑚𝑠, 𝐸 = 2.4𝑚𝐽, 𝑆 = 26.1𝑀𝐵), H-CNN generated by H-Gen can improve accuracy by 1.6% ∼ 4.3%
and reduce parameter size by 1.9× ∼ 13.7×, energy cost by 1.3× ∼ 1.6× with labor cost 1.6% ∼ 2.5%. Second,
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Table 4. Performance of H-DNNs generated by H-Gen in different object detection datasets. (↑) represents accuracy im-
provement and (×) represents the cost reduction.

Task H-YOLO(Compared with origin YOLO) H-Faster RCNN(Compared with origin Faster RCNN)
A(%) T(ms) E(mJ) S(MB) L(%) A(%) T(ms) E(mJ) S(MB) L(%)

D6 39.2(↑ 4.2) 545.4(1.5×) 197.8(1.7×) 201.5(8.1×) 3.4 42.1(↑ 3.1) 761.5(1.1×) 321.2(1.3×) 442.7(3.9×) 3.8
D7 32.8(↑ 1.5) 316.7(2.6×) 206.7(1.6×) 274.9(6.0×) 1.6 36.8(↑ 2.4) 425.4(1.9×) 286.6(1.5×) 363.2(4.8×) 2.4
D8 28.7(↑ 0.6) 283.7(2.9×) 306.8(1.1×) 382.4(4.3×) 0.8 30.2(↑ 1.1) 364.9(2.3×) 367.1(1.1×) 534.4(3.2×) 0.6
D9 52.4(↑ 2.1) 521.3(1.6×) 116.1(2.8×) 294.7(5.6×) 2.1 58.8(↑ 4.2) 624.2(1.3×) 241.4(1.7×) 160.1(10.8×) 4.4
D10 51.5(↑ 5.3) 668.5(1.3×) 285.4(1.2×) 132.2(12.4×) 4.1 56.4(↑ 2.5) 357.3(2.3×) 301.9(1.4×) 221.6(7.8×) 1.8
D11 50.1(↑ 3.0) 486.7(1.7×) 252.7(1.3×) 227.4(7.2×) 2.8 60.7(↑ 4.7) 526.7(1.6×) 354.2(1.2×) 180.7(9.6×) 2.8
D12 56.7(↑ 2.8) 511.9(1.6×) 163.2(2.0×) 189.9(8.6×) 3.7 61.5(↑ 3.6) 421.1(2.0×) 310.8(1.4×) 238.2(7.3×) 1.7

Table 5. Performance of H-DNNs generated by H-Gen with different platform-imposed resource budgets.

Mobile Devices H-CNN hyperparameters Compared with the origin CNN
Compression combination human labor 𝜏 A T E S L

Device 1 𝑜𝑐4 + 𝑜
𝑓
1 0.38 ↑ 1.60% 0.8× 1.6× 13.7× 2.5%

Device 2 𝑜𝑐5 + 𝑜
𝑓
2 0.22 ↑ 3.20% 1.2× 1.3× 1.9× 1.2%

Device 3 𝑜𝑐2 + 𝑜
𝑓
1 0.26 ↑ 4.30% 1.1× 1.4× 2.3× 1.6%

Table 6. Performance of H-DNNs generated by H-Gen with different human labour budgets.

Labor budget 𝐿𝑐 (%)
H-YOLO hyperparameters Compared with the origin YOLO

Compression Combination Human labor 𝜏 A T E S L
0 𝑜𝑐5 + 𝑜

𝑓
1 - ↓ 0.90% 2.2× 1.3× 5.6× 0

2 𝑜𝑐6 + 𝑜𝑐5 + 𝑜
𝑓
2 0.23 ↑ 1.30% 2.4× 1.4× 7.1× 1.60%

4 𝑜𝑐2 + 𝑜
𝑓
1 0.48 ↑ 4.20% 1.9× 1.9× 6.1× 2.40%

6 𝑜𝑐1 + 𝑜𝑐5 + 𝑜
𝑓
3 0.55 ↑ 4.70% 2.0× 1.7× 8.6× 4.20%

8 𝑜𝑐5 + 𝑜𝑐2 + 𝑜
𝑓
1 0.61 ↑ 4.70% 1.4× 2.2× 10.8× 6.80%

for Device 1 with fewer resources, the generated model achieves up to a 1.6× reduction in energy consumption
and 13.7× reduction in parameter size with a 1.6% improvement accuracy. Third, H-Gen automatically searches
for suitable H-CNN hyperparameters, e.g. 𝑜𝑐4 to 𝑐𝑜𝑛𝑣 , 𝑜 𝑓1 to 𝑓 𝑐 and 0.38 to 𝜏 for Device 1, 𝑜𝑐5 to 𝑐𝑜𝑛𝑣 , 𝑜 𝑓2 to 𝑓 𝑐
and 0.22 to 𝜏 for Device 2. In summary, H-Gen can maximize accuracy and reduce overall latency by adaptively
generating H-DNNs that meet their resource constraints for different mobile devices.

7.3.3 H-DNNs with Different Human Labor Budgets. This experiment evaluates H-Gen with different labor bud-
get with Device 2, using H-YOLO and VisDrone (D6) as the model and dataset. Different labor budget 𝐿𝑐 affects
𝛿3 ∼ 𝛿5 of Eq.(14). Specifically, 𝛿5 = 0.1−𝐿𝑐

0.1 , 𝛿3 + 𝛿4 = 1 − 0.1−𝐿𝑐
0.1 and the ratio of 𝛿3 and 𝛿4 is determined by the

resource of Device 2. Table 6 shows the details and performance of H-YOLO generated by H-Gen. Compared
with the origin YOLO, H-YOLO generated by H-Gen can improve mAP by 1.3% ∼ 4.9% and reduce parameter
size by 6.1× ∼ 10.8×, latency by 1.4× ∼ 2.4×, energy cost by 1.4× ∼ 2.2× with labor cost 1.6% ∼ 6.8%. Also, H-
Gen automatically searches for suitable H-DNN hyperparameters, e.g. 𝑜𝑐6 to 𝑐𝑜𝑛𝑣 of H-YOLO network 𝑏𝑙𝑜𝑐𝑘1−2,
𝑜𝑐5 to 𝑐𝑜𝑛𝑣 of H-YOLO network 𝑏𝑙𝑜𝑐𝑘3 − 5, 𝑜 𝑓2 to H-YOLO network 𝑓 𝑐 and 0.23 to 𝜏 for 𝐿𝑐 = 2%; 𝑜𝑐5 to 𝑐𝑜𝑛𝑣 of
H-YOLO network 𝑏𝑙𝑜𝑐𝑘1− 2, 𝑜𝑐2 to 𝑐𝑜𝑛𝑣 of H-YOLO network 𝑏𝑙𝑜𝑐𝑘3− 5, 𝑜 𝑓1 to H-YOLO network 𝑓 𝑐 and 0.61 to 𝜏
for 𝐿𝑐 = 8%. In conclusion, H-Gen can maximize accuracy and reduce latency by automatically selecting model
hyperparameters that meet their different labor budget for mobile applications.
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Fig. 10. Impact of compression hyperparameter: (a) layer compression selection and (b) compression combination optimizer.

7.4 Parameter Sensitivity Analysis of H-Gen
7.4.1 Impact of Compression Layer Selection. For classification tasks, AdaDeep [38] has shown that layer-wise
selective compression techniques only incur a slight accuracy loss. However, more feature information needs to
be preserved for more complex object detection tasks. Therefore, these experiments compare the impact of dif-
ferent layer compression selection methods on the accuracy. We use the 𝑜𝑐5 compression technology to compress
the backbone conv layer of Faster RCNN. We compare four methods of layer compression selection, i.e., layer-
by-layer (each layer is compressed), random (each layer is compressed with a probability of 0.5), layer jump
(compress one layer every two layers), and H-Gen (skip the first layer of each block). The results are shown
in Figure 10a. While other methods incur unacceptable mAP losses, H-Gen’s compression layer selection can
achieve minimum mAP loss 3.4% ∼ 4.2% under the condition that the optional compression layers are similar.

7.4.2 Impact of Compression Combination Optimizer. Adadeep [38] has verified the advantages of compression
technology combination through experiments for CNN.This experiment is to verify that the compression combi-
nation is also effective for more complex object detection models in H-Gen. We compare the performance of the
random combination of compression methods for the YOLOmodel on D6 with compression methods selected by
the optimizer.The results are shown in Figure 10b. Compared to a random combination of compression methods,
the optimized combination improves 3.4%mAP and reduces 40.5𝑀𝐵 parameter size, 30.7𝑚𝑠 latency, and 31.8𝑚𝐽
energy cost. In conclusion, the optimized combination can satisfy different resource constraints.

7.4.3 Impact of Human Labor Hyperparameter. This experiment aims to illustrate the impact of human labor
hyperparameters on accuracy, extra latency, and the number of annotations of H-DNNs. For different H-DNNs,
we calculate the confidence (Eq.(2), Eq.(4) and Eq.(7)) of each inference, and take confidence threshold 𝜏 as the
hyperparameter for human labor. Figure 11 shows the results. As mentioned in Section 5.2, the accuracy, extra
latency, and annotation numbers are related to different human labor hyperparameter 𝜏 . Both of them increase
with the increase of 𝜏 . Taking H-CNN as an example, we conducted 10,000 inferences. When the 𝜏 is set as
0.1, the number of human annotations required is 11. Accordingly, the model’s accuracy is 82.9%, and the extra
latency caused by human annotations is 7.5𝑚𝑠 . Andwhen the 𝜏 is 0.5, the number of required human annotations
increased to 76. The H-CNN’s accuracy rose to 84.1%, and the extra latency is about 26.9𝑚𝑠 . The experiment
results show that the human labor hyperparameter 𝜏 is tunable for optimizing H-DNN’s accuracy and latency
and proves that we use it to trade-off the performance.

7.4.4 Impact of the Filter Model in the Enhancement Training Stage. We verify the impact of introducing the
filter model in the human knowledge base through an ablation study with H-CNN on D2. Figure 12a shows the
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Fig. 12. Ablation studies.

results. Introducing the filter model reduces the number of selected human-annotated samples for training (e.g.
from 52 to 36), which improves the training speed by 28.4%. Also, it has little impact on the generated H-DNN’s
accuracy and compression performance. In summary, the filter model can speed up the training speed.

7.4.5 Comparison with Cloud-based Method. We compare the crowdsourcing-based human-in-the-loop infer-
ence scheme with the cloud-assisted baseline. In the cloud-based scheme, we transmit the data (1000 images)
from the smartphone (Device 2) to the cloud server for inference. Figure 12b shows the comparison results. In
the H-YOLO’s inference scheme, we only need to upload a small number of samples (4.6% in a batch size of 1000)
with low inference confidence to the crowdsourcing platform for human annotations. The average latency is
about 184.4𝑚𝑠 . Compared to the cloud-assisted method, h-YOLO dramatically saves the transmission cost with
competitive accuracy (≤ 1.3% accuracy drop) and latency (≤ 6𝑚𝑠 less latency).

7.4.6 Impact of Threshold Value in Confidence Calculation. We calculate the input’s overall confidence in H-
YOLO by accumulating each grid’s classification and regression confidence, as mentioned in Section 4.1.3. This
experiment explores the number of missing objects in a grid under different thresholds. We counted the number
of H-YOLO missing objects under different threshold settings within a batch (i.e., 1000) of samples. Figure 12c
shows the experimental results. When the threshold is greater than 0.5, the average number of missing objects
per input is ≤ 1. When the threshold is less than 0.5, the number of missing objects per input is greater than
4. Therefore, 0.5 is the maximum threshold that guarantees a low object missing rate. Accordingly, we set the
threshold as 0.5 by default in the confidence calculation.

7.5 Necessity of Human Participation in H-DNNs
7.5.1 Performance of H-CNN. We use LeNet to evaluate the accuracy of the H-CNN in Section 4.1.1 on five tasks
(D1∼D5), i.e., Digit, Fashion, and challenging factors (e.g. noise, low light) classification. The challenging factors
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Fig. 13. Performance comparison of DNNs and the corresponding H-DNNs on challenging datasets.

in CNN will affect the misalignment of features, resulting in low accuracy. In H-CNN, we choose the same net-
work hyperparameters (Optimized by Hyperopt) as the original LeNet, and fix the human labor hyperparameter
𝜏 to 0.2. As shown in Figure 13(a), we compare the accuracy of the origin CNN and H-CNN. First, for different
classification tasks and challenging factors, human involvement can improve the accuracy of the original model
by 0.3% ∼ 9.5%. Second, H-CNN can improve by 0.4% ∼ 6.4% on regular classification tasks (D1 and D3) and
by 2.9% ∼ 9.5% on noisy and low-resolution tasks (D2, D4, and D5). Summaryly, human involvement can help
CNN improve accuracy and play a more significant role under more challenging factors.

7.5.2 Performance of H-YOLO. We evaluate the mAP (IOU=0.5) of the H-YOLO in Section 4.1.2 on five different
challenging tasks (D6, D7, D8, D11, and D12), i.e., small, low-light, camouflaged, low resolution and noise object
detection. These factors further aggravate the YOLO’s shortcomings of low-accuracy detection for small objects.
We fix the human labor hyperparameter 𝜏 to 0.3. As shown in Figure 13(b), we compare the performance of
the origin YOLO and H-YOLO. First, for different challenging object detection tasks, human involvement can
improve the mAP of the original DNN by 5.2% ∼ 11.1%. Second, H-YOLO can improve 11.1% on small object
detection tasks (D6) and improve by 5.1% ∼ 9.4% on other challenging tasks (D7, D8, D11, and D12). In summary,
human involvement can help the YOLO model improve the ability for different challenging objects and improve
for small and camouflaged objects.

7.5.3 Performance of H-Faster-RCNN. We evaluate the mAP (IOU=0.5) of the H-Faster-RCNN in Section 4.1.3 on
five different challenging tasks (D6, D9, D10, D11, and D12), i.e., small, thermal, motion-blur, low resolution and
noise object detection. We fix the human labor hyperparameter 𝜏 to 0.3. As shown in Figure 13(c), we compare
the performance of the origin Faster RCNN and H-Faster-RCNN. For different challenging object detection tasks,
human involvement can improve the mAP of the initial model by 4.3% ∼ 8.2%. In conclusion, human-annotated
soft labels can help capture detailed information in challenging scenarios to improve accuracy.

7.6 Case Study
We deploy H-Gen on a server with the Intel i9-10900K 3.70GHz CPU and NVIDIA GTX 3090Ti GPU to generate
the H-CNNs for a mobile emotion recognition application. We load the generated H-CNNs with an Android
application on a smartphone (i.e., Huawei P20, device2). The application employs a pool-based data processing
method. Specifically, it adopts the generated H-CNN to recognize the user’s expressions (e.g. anger, disgust, fear,
happiness, routine, sadness, and surprise) per frame and infers the user’s overall emotion based on the expression
prediction results of 120 frames within a time window of 2s. Figure 14 illustrates the scenario.
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Table 7. H-CNN’s performance over three challenging scenarios, in terms of (a) accuracy, (b)latency, (c) storage, (d) energy
cost, and (e) # of annotations (in 2s).

Scenarios A(%) T(ms) E(mJ) S(MB) # Annotations(in 2s)
Angle-changing 70.4 494.5 1.8 2.6 10
Moving scenes 70.1 498.5 1.3 1.4 14
Low lighting 70.9 488.5 1.9 2.8 8

In the training stage, H-Gen automatically optimizes the hyperparameters of H-CNN according to the user-
specified performance demands and resource/labor budgets (i.e., 𝐴𝑑=70%, 𝑇𝑑 = 500𝑚𝑠 , 𝑆𝑐 = 2𝑀𝐵, 𝐸𝑐 = 3.0𝑚𝐽 ,
and 𝐿𝑐=25). H-Gen perform the two-stage optimization (see Algorithm 1) to generate the H-CNN. We chose
FER-2013 (containing 28,709 training facial images, 3589 private test facial images, and 3589 public test facial
images) as the dataset, which provides cropped facial images with 48 × 48 pixels.

In the inference stage, theH-CNNon themobile devicewill perform tasks constantly and upload low-confidence
samples in challenging scenarios to the H-Gen server. The H-Gen server completes the data annotation through
the crowdsourcing platform. The crowdsourcing platform will check the participant’s status and only assign
the annotation tasks to online participants. We employ four students to install the crowdsourcing application
(i.e., WeSense) [39] on their mobile phones and discover, accept, and complete the annotation tasks. The anno-
tations are stored in an extra human knowledge base. When new human knowledge accumulates to a preset
threshold(e.g. 200 for H-CNN), H-Gen will retrain H-CNN. H-Gen will use new labeled data to fine-tune H-CNN
weights and update the new H-CNN to mobile devices. We test the H-CNN’s performance in terms of accuracy,
latency, storage, and energy cost under three challenging scenarios (i.e., angle changing, moving scenes, and
low lighting).

Table 7 summarizes the results. In the angle-changing scenario, 10 out of the 120 frames are for human an-
notation, and the average latency is 494.5ms (including network latency of 29.4ms) in 2s. The accuracy is 70.4%.
In the moving scenes scenario, 14 out of the 120 frames are for human annotation, and the average latency is
498.5ms(including network latency of 32.6ms) in 2s. The accuracy is 70.1%. In the low lighting scenario, 8 out
of the 120 frames are for human annotation, and the average latency is 488.5ms(including network latency of
20.5ms) in 2s. The accuracy is 70.9%.

8 CONCLUSION
We propose H-Gen, an automatic model specialization and compression framework for human-in-the-loop
DNNs (H-DNNs). It is the first proposal to incorporate human participation as a new hyperparameter into the
design space of efficient H-DNN generation for better performance-resource trade-off. H-Gen formulates the
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search space, metric calculation, and search strategy to build a NAS-style H-DNN hyperparameter tuning frame-
work. We also propose human participation mechanisms for three common DNN architectures to showcase the
feasibility of H-Gen. Evaluations on twelve challenging mobile tasks over three H-DNN architectures demon-
strate the effectiveness ofH-Gen. We envisionH-Gen as one step closer to automatic, intelligent, and ubiquitous
human-in-the-loop machine learning.

In the future, we would like to improve H-Gen in the following aspects. (i) Explore generic rationales and
optimal mechanisms for human annotation. This paper only serves as a feasibility study with three showcases
(H-CNN, H-YOLO, H-Faster RCNN) to integrate human annotations into the DNN development chain, which
results in architecture-specific designs. It would be interesting to investigate principles and rationales that con-
tribute to unified and optimal designs of human annotations for DNNs. (ii) Devise crowdsourcing incentives
and mechanisms suited for human-in-the-loop DNNs. We simplify our design by assuming that human annota-
tors are always available to provide high-quality annotations because our design only requires a small portion
of samples to be annotated. However, designing crowdsourcing mechanisms dedicated to human-in-the-loop
DNNs can further improve the quality and the latency of human annotation on these samples. Practical issues
such as incentive mechanisms, task assignments, quality control, and user interfaces would also contribute to
the large-scale deployment of H-Gen. (iii) Integrate more performance metrics related to mobile devices. The
current version of H-Gen implicitly considers the computation resources of mobile devices in the latency. An
immediate improvement is explicitly integrating metrics such as MACs and Ops into the optimization frame-
work. We can also consider finer-grained human labor assessments such as match degree and reputation level.
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APPENDIX
In Equation (15), the coefficients 𝛿1 and 𝛿2 are defined by user demands as input forH-Gen.H-Gen automatically
assigns the coefficient 𝛿3, 𝛿4, 𝑎𝑛𝑑𝛿5 according to different resource constraints. The labor cost factor 𝛿5 is directly
determined by themaximum labor cost acceptable to the user using function 𝛿5 = 0.1−𝐿𝑐

0.1 .The lower the labor cost
constraint is, the greater the reward coefficient for saving labor costs is. 0.1 is the maximum 𝐿𝑐 that the system
allows for input (preset in H-Gen). Following AdaDeep, 𝛿4 is set as𝑚𝑎𝑥{ 3800−𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦3800 , 0.5}. And 𝛿3 = 1− 𝛿5 − 𝛿4.

Table 8. Summary of major notations.

Notation Explanation

𝐴,𝑇 , 𝐸, 𝑆 , 𝐿 accuracy, latency, energy, storage and labour cost of H-DNN
𝐴𝑑 ,𝑇𝑑 accuracy and latency requirements
𝐸𝑐 , 𝑆𝑐 , 𝐿𝑐 energy, storage, labour cost constraints
𝑐𝐻−𝐶𝑁𝑁 , 𝑐𝐻−𝑌𝑂𝐿𝑂 , 𝑐𝐻−𝐹𝑎𝑠𝑡𝑒𝑟−𝑅𝐶𝑁𝑁 inference confidence of H-CNN, H-YOLO, H-Faster-RCNN
𝐿0𝐻−𝐶𝑁𝑁 , 𝐿0𝐻−𝑌𝑂𝐿𝑂 , 𝐿0𝐻−𝐹𝑎𝑠𝑡𝑒𝑟−𝑅𝐶𝑁𝑁 human labour cost per sample of H-CNN, H-YOLO, H-Faster-RCNN
𝑎𝑛𝑛𝑜𝑖 , {𝑎𝑛𝑛𝑜𝑛 (𝑤,ℎ, 𝑥, 𝑦, 𝑐 ) }, {𝑎𝑛𝑛𝑜𝑛 (𝑤,ℎ, 𝑥, 𝑦) } human annotation per participant of H-CNN, H-YOLO, H-Faster-RCNN
𝑤, ℎ, 𝑥 , 𝑦 width, height, x-coordinate, y-coordinate of annotation box
�̄�, ℎ̄, 𝑥 , 𝑦 mean width, height, x-coordinate, y-coordinate of annotation box
𝛿1, 𝛿2 coefficient to balance 𝐴 and𝑇
𝛿3, 𝛿4, 𝛿5 coefficient to balance 𝑆 , 𝐸 and 𝐿
𝜐 hyperparameter for model compression
𝜏 threshold to determine amount of human participation
𝑇𝑖𝑛𝑓 𝑒𝑟 ,𝑇𝑒𝑥𝑡𝑟𝑎 DNN inference time, extra latency by human participation per batch
S𝑓 , S𝑝 storage for activations and weights
S𝑎 , S𝑤 total # activations and weights in DNN
𝐵𝑎 , 𝐵𝑤 # bits per activation and weight
𝜂 energy cost per MAC
𝑀𝐴𝐶𝑠 # multiply-accumulat of DNN
𝐿𝑎𝑐𝑡𝑢𝑎𝑙 , 𝐿𝑚𝑎𝑥 actual and maximum acceptable labour cost per batch inference
𝑛, 𝑁 # boxes annotated per participant, # samples to be annotated per batch
M batch size
I(.) , 𝑌 (.) , indicator functions
𝑐𝑐𝑖 , 𝑐𝑐𝑟𝑖 classification and regression confidence in grid 𝑖
𝑊 , 𝐻 ,𝐺 width, height, # grid of an input image
𝐺𝑥𝑖 ,𝐺𝑦𝑖 convolution in the horizontal and vertical direction of each image pixel
𝑜𝑖𝑐 , 𝑜

𝑗
𝑓

compression techniques for conv and fc layer
𝑚 # human participants
𝑘 # categories in classification or object detection
Φ search space of 𝜐
𝜆 a factor in H-CNN
𝑐 class of human annotated object
𝜇𝑖 mixture weight for Gaussian component
Ω optimal component number in H-Faster-RCNN
Σ covariance matrix of size and position of human annotation areas
𝜎𝑆𝑀 softmax operator
𝑧 logit 𝑘-dimensional vector
T a learnable parameter in H-CNN
𝑙 , ℎ𝑙 , 𝑤𝑙 , 𝑐𝑙 index, height, width, and channels of input features to DNN layer 𝑙
𝜔 , 𝜔𝑎𝑐𝑡𝑜𝑟 , 𝜔𝑐𝑟𝑖𝑡𝑖𝑐 parameters of DQN, DDPG actor and DDPG critic
𝑂 ,𝑂 ′ action set of DQN and DDPG
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