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The rise of mobile devices with abundant sensory data and local computing capabilities has driven the trend of federated
learning (FL) on these devices. And personalized FL (PFL) emerges to train specific deep models for each mobile device
to address data heterogeneity and varying performance preferences. However, mobile training times vary significantly,
resulting in either delay (when waiting for slower devices for aggregation) or accuracy decline (when aggregation proceeds
without waiting). In response, we propose a shift towards asynchronous PFL, where the server aggregates updates as soon as
they are available. Nevertheless, existing asynchronous protocols are unfit for PFL because they are devised for federated
training of a single global model. They suffer from slow convergence and decreased accuracy when confronted with severe
data heterogeneity prevalent in PFL. Furthermore, they often exclude slower devices for staleness control, which notably
compromises accuracy when these devices possess critical personalized data. Therefore, we propose EchoPFL, a coordination
mechanism for asynchronous PFL. Central to EchoPFL is to include updates from all mobile devices regardless of their latency.
To cope with the inevitable staleness from slow devices, EchoPFL revisits model broadcasting. It intelligently converts the
unscalable broadcast to on-demand broadcast, leveraging the asymmetrical bandwidth in wireless networks and the dynamic
clustering-based PFL. Experiments show that compared to status quo approaches, EchoPFL achieves a reduction of up to
88.2% in convergence time, an improvement of up to 46% in accuracy, and a decrease of 37% in communication costs.
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1 INTRODUCTION
The rapid growth of sensory data generated from ubiquitous mobile devices, coupled with their local computing
power, in addition to the widespread availability of wireless networks, has catalyzed the emergence of federated
learning (FL) on these devices. In this paradigm, multiple clients, i.e., ubiquitous mobile devices such as smart-
phones, wearables, drones, and robots, collaboratively train a shared model in a specific application scenario
under server orchestration while keeping their datasets decentralized [28, 29, 39]. FL offers an avenue for the
development of data-intensive deep learning applications with ubiquitous mobile devices, including activity
recognition [33, 44], personalized recommendation [34, 42, 56], and transportation [20, 35, 57]. Attributed to
diverse user behaviors and preferences, sensory data from ubiquitous mobile devices are often non-IID (identically
and independently distributed). For example, one user prefers outdoor activities, while another prefers indoor
hobbies. Their sensory data, such as GPS location or activity trackers, would exhibit distinct patterns. This makes
it challenging to learn a single model for all clients with high accuracy [7, 54].

To handle such natural data heterogeneity on ubiquitous mobile devices, personalized federated learning (PFL)
has been introduced. PFL seeks to train client-distinct models to accommodate the diverse data distributions
across different clients [54]. PFL strategies roughly fall into global model personalization or learning personalized
models. The former includes techniques such as local fine-tuning [59, 66, 68] and meta-learning [16], while the
latter embraces methods like clustering [4, 17, 33, 44], multi-task learning [50], and knowledge distillation [67].
However, there exists a significant gap when it comes to the practical deployment of such PFL systems in

real-world ubiquitous mobile application scenarios. The gap is the variations in local training time, especially
due to the diverse computing resources and network availability of different devices. Most PFL frameworks, such
as those proposed in studies like [4, 17, 19, 44, 50, 67, 72], are developed with the assumption of synchronous
model aggregation, where the server waits for updates from all clients in each round. In essence, slow devices
can induce significant waiting time and thus the training delay. However, collaborative training with mobile
devices is always latency-sensitive in ubiquitous applications, for example [10, 70]. Compounding this issue,
the specialized designs in PFL often come with even higher computation and communication costs than the
non-personalized counterparts [7]. This brings us to a potential solution: asynchronous PFL, where the server
aggregates updates when they arrive from clients, eliminating the waiting time associated with stragglers. In
particular, many alternative solutions exist to address the challenge of mobile system heterogeneity, such as
client selection [28, 30, 41], adaptive learning rate control [64], and heterogeneous model architectures [12, 13].
Among them, the asynchronous strategy is notable, offering simplified client-server coordination and enhanced
adaptability to mobile device resource fluctuations [65].
Nevertheless, asynchronous PFL with mobile devices introduces its own set of challenges. Asynchronous

protocols might incur excessive communication overhead and degraded accuracy due tomodel staleness [40, 45, 63].
To balance model accuracy and training latency, semi-asynchronous FL [38, 53, 61] has been introduced, where
clients synchronize with the server at carefully controlled frequencies. However, we note that these protocols are
primarily designed for training a single model and may encounter challenges when applied in the context of PFL
(see Sec. 2). Also, researchers [15, 65] report slow convergence and considerable accuracy drop of asynchronous
protocols with severe data heterogeneity—an issue that is present in PFL. A more notable concern is the potential
exclusion of slower devices for staleness control [61]. When the slow devices contain large amounts of important
personalized data, excluding them from training would drastically deteriorate the model accuracy [53].

In this paper, we propose EchoPFL, a simple yet effective client-server coordination mechanism via proactive
on-demand model broadcast for staleness control in asynchronous PFL with mobile devices. At its core, EchoPFL
ensures no critical data is left behind by including updates from all devices, regardless of their local training
latency. Specifically, to manage the inevitable model staleness from slower devices, the server timely broadcasts
the most recent aggregated models to clients involved in the training of the same personalized cluster, akin to an
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"echo". Note that proactive broadcast is seldom applied in prior asynchronous FL systems because it introduces
excessive server-client communication. Instead, we find broadcasts suited for asynchronous PFL with mobile
devices based on the following novel observations:

• Wireless networks connecting ubiquitous devices often feature asymmetric bandwidth. For example, the
downstream bandwidth can be up to 10× larger than the upstream bandwidth, in a typical 5G network
[8]. This asymmetry is particularly advantageous because the model broadcast from the server exclusively
utilizes the downstream traffic, preventing network congestion and thus long latency.
• The data heterogeneity in PFL can be seen as blessing rather than a burden with the model broadcasting.
This is because data heterogeneity allows for a more targeted approach to broadcasting model updates.
By confining model broadcasts to clients with similar data distributions, the scope of the broadcast is
constrained. Moreover, since broadcast takes place on relatively homogeneous data, it also increases the
tolerance to staleness and potentially reduces the broadcast frequency [44].

Specifically, the design of EchoPFL is grounded upon clustering-based PFL frameworks [4, 17, 44], as many
datasets in mobile computing applications exhibit high clusterability [44]. To rapidly and accurately assign clients
to appropriate clusters based on asynchronously arrived information, EchoPFL adopts data-aware dynamic client
clustering to incrementally create and manage clusters. Moreover, EchoPFL periodically merges/expands clusters
in line with potential drifts in mobile client data. Within each cluster, EchoPFL also predicts the optimal broadcast
frequency to further reduce the downstream communication cost without compromising accuracy. We implement
EchoPFL as a continuous integration (CI) based client-server coordination scheme which makes it promising for
integration with mainstream FL frameworks, such as FLOWER [2]. We evaluate the performance of EchoPFL on
four mobile tasks and four real-world scenarios with diverse data or system heterogeneity using twenty mobile
devices. Results show a reduction of up to 88.2% in training time and up to 37% in communication cost with
an improvement of up to 41.04% in accuracy. Especially, EchoPFL achieves up to 46% accuracy increase in slow
clients (Sec. 7). Our main contributions are summarized as follows.

• To the best of our knowledge, this is the first work that effectively integrates ubiquitous system asynchrony
into personalized FL. It not only ensures the inclusion of slower mobile clients but also effectively tackles
the challenge of model staleness without compromising any mobile model accuracy.
• We propose EchoPFL, asynchronous personalized FL with mobile devices via on-demand model broadcast.
It harnesses the data heterogeneity in personalized FL and the bandwidth asymmetry in wireless networks
via data-aware dynamic client clustering and in-cluster adaptive model broadcast. We also implement
EchoPFL as an easy-to-use client-server coordination scheme for integration with other FL frameworks.
• Experiments show that EchoPFL outperforms existing a-/semi-/synchronous or personalized FL methods
[28, 39, 44, 63] in trading off between accuracy and training time at low communication costs across various
mobile tasks, platforms, and scenarios. It also yields a significant accuracy increase for slow devices.

2 MOTIVATION AND CHALLENGE
In this section, we delve into the potential advantages and challenges of asynchronous PFL, drawing insights
from preliminary studies on two mobile applications.

2.1 Motivation for Asynchronous Personalized FL
In the context of mobile applications, FL systems aim to learn accurate deep models with low latency, allowing
for fast adaptation to dynamic contexts and user preferences. Generally, Federated Learning (FL) constitutes a
collaborative training process between multiple mobile clients and a server [28, 29, 39, 58]. Mobile clients perform
local training with their local datasets and subsequently upload their trained deep models to the server. The
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Table 1. Performance comparisons of different FL paradigms on two widely used mobile applications.

Representative paradigms Image recognition (IR) Human activity recognition (HAR)
Accuracy

(%)
Accuracy at the
slowest device (%)

Accuracy at the
fastest device (%)

Latency
(min)

Accuracy
(%)

Accuracy at the
slowest device (%)

Accuracy at the
fastest device (%)

Latency
(min)

Sync FL (FedAvg [39]) 52.1 ± 15.3 30.5 60.6 398 89.7±5.3 82.1 94.6 37.2
Async FL (FedAsyn [63]) 48.6 ± 22.5 22.1 71.3 102 85.6±11.4 65.4 91.2 17.4
Sync PFL (ClusterFL [44]) 92.4 ± 3.7 89.6 94.3 321 99.6±0.2 98.9 100 33.6
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(d) Async PFL
Fig. 1. Potential gains in training latency of asynchronous PFL over existing FL paradigms.

server aggregates these models, often using weighted averaging, and then distributes the updated model back to
the mobile clients. This iterative process continues until convergence.

However, standard FL algorithms, such as FedAvg [39], encounter performance degradation when applied to
mobile devices. The reasons are two-fold:
• A unified global model yields low accuracy with non-IID sensory data across mobile devices, necessitating
various personalized global models for individual mobile devices [7, 54].
• The primary latency bottleneck in each training round is the need to wait for stragglers, e.g., low-speed
computing devices. This highlights the importance of considering asynchrony from a system perspective
[40, 45, 63].

Current FL paradigms with mobile devices that emphasize either data or resource heterogeneity fail to strike
an optimal balance between model accuracy and training latency. To illustrate, we evaluate the performance of
representative paradigms with two tasks: image recognition and human activity recognition. The former encom-
passes applications such as smartphone-based face recognition [25] and robot-driven security patrolling [14]. The
latter is widely used in health-care [24, 52, 60, 69] and motion detection [73]. Tab. 1 presents the results on the
CIFAR-10 [27] (for image classification) and HAR-UCI [1] (for human activity recognition) employing 12 diverse
mobile devices using three FL paradigms: synchronous FL (FedAvg [39]), asynchronous FL (FedAsyn [63]), and
synchronous PFL (ClusterFL [44]). The detailed experimental setups are available in Sec. 7.1. Note that our focus
on clustering-based PFL algorithms arises from the high clusterability observed in the data distributions across
many mobile applications [6, 44, 51]. We make the following observations.
• Synchronous personalized FL (PFL) significantly outperforms synchronous FL in accuracy. In image
recognition, synchronous PFL improves the accuracy by at least 40.3% over synchronous FL. For human
activity recognition, it shows a 9.9% accuracy advantage over synchronous FL.
• The accuracy of synchronous personalized FL is also 4.1% higher than asynchronous FL (16.7% higher on
the lowest device), yet with longer training latency.
• Asynchronous FL drastically decreases training latency. In image recognition, it reduces the training time
by 74.4% compared to synchronous FL, whereas in human activity recognition, the reduction is 53.2%.

These observations motivate us to not only adopt the PFL paradigm to ensure the accuracy of different
ubiquitous mobile applications but also to further reduce the training latency of PFL by transitioning from
synchronous to asynchronous model aggregation, i.e., asynchronous PFL. The intuition is also demonstrated in
Fig. 1. Specifically, asynchronous FL effectively reduces latency by eliminating the waiting time for slow devices
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Fig. 2. Impact of slow device model dropping on PFL.
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Fig. 3. Impact of asynchrony on clustering.

during model aggregation (Fig. 1b vs. Fig. 1a). Synchronous PFL (via clustering) employs personalized models to
balance generalization and personalization, meanwhile accelerates the training process by only waiting for the
slow devices within the same clusters (Fig. 1c vs. Fig. 1a). Notably, the training latency of synchronous PFL can
be further optimized by enabling asynchronous aggregation within clusters (Fig. 1d vs. Fig. 1c). Therefore, by
shifting to asynchronous PFL(APFL), we would achieve both higher model accuracy and lower training latency.

2.2 Challenges in Asynchronous PFL with Mobile Devices
While asynchronous protocols [40, 45, 63] and personalization techniques [4, 17, 19, 44, 50, 67] exist for FL,
seamlessly integrating the two introduces non-trivial challenges.
Challenge #1: How to adapt the personalization strategies to the asynchronous mobile system

setting? Prior PFL frameworks [44, 48] implicitly assume a synchronous, globally comprehensive information
collection process for subsequent processes, e.g., clustering. However, in real-world asynchronous system settings,
where mobile clients may not respond to the server within the desired time limit, the server must cluster mobile
clients based on partial information. This process must also operate under real-time constraints, potentially
leading to less accurate clustering results. For example, as shown in Fig. 3, existing synchronous PFL methods
cluster mobile clients by utilizing the same epoch to measure specific probabilistic distance metrics among the
local model updates returned by all mobile clients [44, 48]. However, when local model updates inevitably arrive
at the server in different epochs, this approach fails to promptly and accurately identify clusters.

Challenge #2: How to control the model staleness without decaying or discarding updates from slow
mobile devices in personalized FL process? Asynchronous FL protocols often adopt weight decay [45, 63] or
model dropping [38, 61] to mitigate the negative impact on aggregated model accuracy caused by outdated models.
However, we argue that these methods can result in a significant degradation in the accuracy of personalized
models. This is because slow devices may possess crucial data necessary for specific personalized models. To
illustrate this point, consider the toy example presented in Figure 2. Excluding 6 slow devices from a conventional
FL (e.g., FedAvg [39]) neglects a mere 16.7% of data for the single model (marked in blue). Conversely, discarding
the same 6 devices in clustering-based PFL (e.g., ClusterFL [44]) leads to a pronounced data loss of 66.7% for that
cluster (marked in blue). Such data omission can significantly damage the model accuracy for that cluster.
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Fig. 4. Overview of EchoPFL for asynchronous PFL with mobile devices.

3 SOLUTION OVERVIEW
This section presents an overview of EchoPFL, a mobile client-server coordination mechanism for asynchronous
PFL. EchoPFL resolves Challenge #1 in Sec. 4 through dynamic client clustering, which remains efficient and
effective despite the asynchronous arrival of mobile client information. EchoPFL addresses Challenge #2 in Sec. 5
by revisiting model broadcast mechanism, previously deemed unscalable for model staleness control in FL, and
refining it into on-demand model broadcast.
Design Rationales. As mentioned in Sec. 1, on-demand model broadcast becomes viable for model staleness
control in PFL with mobile devices, given the inherently limited model broadcast scope in clustering-based PFL.
The core principle guiding the management of model staleness in PFL is the imperative need to ensure that the
model updates used in the training process remain relatively up-to-date. This necessity becomes particularly
critical in light of the asynchronous nature of ubiquitous mobile systems, which can introduce delays in delivering
specific mobile model updates to the server. These delays may potentially lead to the utilization of outdated models
during the aggregation process and subsequent training rounds. In essence, on-demand model broadcast addresses
these challenges by enabling the broader and more timely dissemination of model updates. This is a departure from
the traditional asynchronous FL, where updates are typically confined to specific devices. The broader broadcast
scope ensures the rapid distribution of model updates to a wider audience, thereby reducing model staleness.
Consequently, it effectively transforms into an "on-demand model broadcast" problem, which is exclusive to
clients sharing similar data distributions, such as those within clusters. This approach effectively addresses
model staleness while minimizing communication overhead. It’s worth noting that broadcast operations over
homogeneous data, i.e., within a cluster, can enhance the system’s resilience to staleness, potentially reducing the
need for frequent broadcasts [44]. Furthermore, on-demand broadcast leverages the more abundant downstream
traffic rather than its upstream link. Accordingly, on-demand broadcast from the server to clients is unlikely to
trigger notable network congestion and thus latency surges.
System Workflow. EchoPFL consolidates the above rationales into an on-demand model broadcast mechanism,
exemplified within clustering-based PFL frameworks [44, 48]. Fig. 4 shows the architecture of EchoPFL. It mainly
consists of two functional modules:
• Data-aware Dynamic Client Clustering (Sec. 4). As client clustering identifies the scope of model broadcast
for staleness control, it is crucial to conduct rapid and accurate client clustering in light of asynchronously
arriving local model updates. EchoPFL dynamically creates and manages clusters via on-arrival initial
clustering and periodic feedback-aware cluster refinement.
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• In-cluster Adaptive Model broadcast (Sec. 5). After clustering, EchoPFL broadcasts the latest aggregated
models to in-cluster clients as required. Due to the relatively homogeneous data distribution within a cluster,
training is resilient against a certain degree of staleness. Also, EchoPFL predicts the optimal broadcast
frequency to further reduce the downstream communication cost without compromising accuracy.

To manage asynchronous version conflicts on server and clients, we further implement EchoPFL as a continuous
integration (CI) based client-server coordination scheme for easy integration with other FL frameworks (Sec. 6).

4 DATA-AWARE DYNAMIC CLUSTERING
As mentioned in Sec. 3, rapid and accurate mobile client clustering in light of asynchronously arriving local
model updates not only constitutes a critical stage in realizing PFL but also plays an essential role in defining
the broadcast scope. We first discuss the requirements and challenges for client clustering in asynchronous PFL,
before explaining the designs of our data-aware dynamic clustering scheme.

4.1 Primer on Mobile Client Clustering
Clustering in personalized FL aims to gather mobile clients whose local sensory datasets share similar distributions
into the same cluster for training [23, 44, 48]. Since the local datasets are inaccessible in FL, the server typically
measures the similarity between the models uploaded by the mobile clients as proxy to the similarity of local
data distributions. The similarity between models can be measured at the parameter level metric (e.g., directly
compare model parameters via L1 distance) or at the feature level (e.g., compare feature maps of model outputs
via KL divergence). Feature-level metrics better reflect the similarity of data distributions among mobile clients
than parameter-level metrics [44]. Yet the feature-level metrics suffer from longer latency because it needs to
collect outputs of model inference. For fast and accurate client clustering, EchoPFL adopts a two-phase scheme by
first promptly assigning mobile clients to an initial cluster upon arrival (Sec. 4.2), and then periodically refining
the clusters via feedback from mobile clients (Sec. 4.3). We elaborate on the two designs below.

4.2 On-arrival Initial Cluster Assignment of Mobile Devices
This module immediately assigns a client to a cluster upon receiving its model update to achieve real-time client
clustering in the asynchronous setting.

4.2.1 Mobile Cluster Initialization. Since model updates arrive asynchronously, EchoPFL initializes the clusters
incrementally [5]. Given a predefined number of clusters 𝐶 , EchoPFL initializes the centers of 𝐶 clusters as the
first 𝐶 local model parameters that arrive at the server.

4.2.2 Mobile Cluster Assignment. For the newly arrived model parameters 𝑢𝑖 from a client 𝑖 , EchoPFL calculates
the L1 distance 𝐿 between 𝑢𝑖 to all 𝐶 clusters and assigns client 𝑖 to the cluster with the smallest L1 distance:

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = argmin (𝐿(𝑢𝑖 , 𝑣1), 𝐿(𝑢𝑖 , 𝑣2), . . . , 𝐿(𝑢𝑖 , 𝑣𝐶 ))
𝑤ℎ𝑒𝑟𝑒 𝐿(𝑢𝑖 , 𝑣𝑐 ) = ∥𝑢𝑖 − 𝑣𝑐 ∥

(1)

𝑢𝑖 is the model parameters uploaded by client 𝑖 , and 𝑣𝑐 represents the model parameters of the 𝑐-th cluster center.
We adopt parameter-level similarity metrics rather than feature-level for real-time mobile client clustering. As

we will show in Sec. 7.4, the feature-level similarity metrics could be 12, 000× slower than the parameter-level
counterpart in this process. Furthermore, feature-level similarity metrics using KL divergence [11, 44] may incur
considerable I/O contention. Despite its high efficiency, the initial clustering could be erroneous, which results in
the feedback-aware clustering refinement, as we will discuss next.
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(b) 𝐹𝑐 , 𝑟𝑜𝑢𝑛𝑑 = 100
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(c) 𝑆𝑐 , 𝑟𝑜𝑢𝑛𝑑 = 1
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(d) 𝑆𝑐 , 𝑟𝑜𝑢𝑛𝑑 = 100
Fig. 5. Illustration of predicted label distribution (𝐹𝑐 ) and soft label distribution (𝑆𝑐 ) based on mobile-side model weights at
different training rounds (i.e., 𝑟𝑜𝑢𝑛𝑑 = 1 and 100) on the same sensory data distribution.

4.3 Feedback-aware Mobile Cluster Refinement
This module improves the accuracy of the initial clusters by periodical refinement, e.g., merging and expanding
clusters based on the mobile client feedback.

4.3.1 Assessing Clustering Accuracy via Mobile Client Feedback. We devise a client feedback scheme to assess the
clustering accuracy. The feedback 𝑔(𝑣𝑐 ,Π𝑖 ) of client 𝑖 measures how the model parameters 𝑣𝑐 from its assigned
cluster 𝑐 fits its local dataset Π𝑖 . Specifically, client 𝑖 performs inference using 𝑣𝑐 on Π𝑖 and records the distribution
𝐹𝑐 of the predicted labels. It then compares 𝐹𝑐 with the distribution 𝐹𝑖 of the actual labels and measures their
difference via the chi-squared test X2 (). That is, the feedback of mobile client 𝑖 is calculated as:

𝑔(𝑣𝑐 ,Π𝑖 ) = X2 (𝐹𝑐 , 𝐹𝑖 ) =
𝐽∑︁
𝑗=1

(𝐹 𝑗
𝑐 − 𝐹 𝑗

𝑖
)2

𝐹
𝑗

𝑖

(2)

where 𝐹 𝑗
𝑐 is the observed frequency of the 𝑗-th class, 𝐹 𝑗

𝑖
is the expected frequency of the 𝑗-th class, and 𝐽 is the

number of classes. As a separate note, we employ the chi-squared test here to assess distribution differences and
account for their non-IID nature and discreteness [3].

However, the client feedback calculated by X2 (𝐹𝑐 , 𝐹𝑖 ) reflects not only the clustering accuracy but also the PFL
training stage. Accordingly, we need to separate and remove the impact of PFL training stages, so that the client
feedback only precisely indicates the accuracy of clustering. This is non-trivial because the early- and late-stage
trained models from slow and fast devices will disturb each other. We observe that the distribution of predicted
labels 𝐹𝑐 by 𝑐 − 𝑡ℎ cluster center model exhibits distinct patterns during different training stages, eliminating the
impact of training from the client feedback. Fig. 5 shows the predicted label distribution 𝐹𝑐 and the predicted soft
label distribution 𝑆𝑐 at different training stages (𝑟𝑜𝑢𝑛𝑑 = 1 or 100). The soft labels are class probabilities produced
by the 𝑐 − 𝑡ℎ cluster center model’s weights. It reveals two observations:
• The consistency in predicted label distributions shows the viability of employing the chi-squared test to
assess label distributions, as highlighted in Fig. 5a and Fig. 5b.
• The predicted distribution of soft labels at various training stages vary, as shown Fig. 5c and Fig. 5d.

In summary, the model parameters 𝑣𝑐 from the 𝑐 − 𝑡ℎ cluster manifest more significant variances in soft label
distributions for predictions across different categories. Accordingly, it could be used as a proxy for the training
stage, and thus rectify the errors in client feedback. Specifically, we introduce a probabilistic variance as a measure
of training sufficiency, and revise the client feedback calculation as follows:

𝑔(𝑣𝑐 ,Π𝑖 ) ≈
𝐽∑︁
𝑗=1

(𝐹 𝑗
𝑐 − 𝐹 𝑗

𝑖
)2

𝐹
𝑗

𝑖

· Var(𝑆𝑐 ) (3)

where 𝑉𝑎𝑟 (𝑆𝑐 ) represents the variance of the predicted distribution of soft labels.

4.3.2 Mobile Cluster Merging. As the model parameters of different cluster centers are trained separately for
an extended duration, they fit diverse and potentially conflicting local data distributions. Naive aggregation
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Fig. 6. Illustration of mobile cluster expansion and merging.

Algorithm 1 Cluster merging via optimization direction prediction
Input: Cluster center models 𝑣 , local dataset on 𝑖-th mobile client Φ𝑖 ;
Output: Merged cluster center model 𝑣 ;
1: 𝑣𝑎𝑢𝑥 (auxiliary models), 𝑣𝑚(main model)← divide 𝑣 ;
2: ®𝑣𝑚 ← 𝐿1(𝑣𝑎𝑢𝑥 , 𝑣𝑚) /* Formulate the assumption for the optimization direction as ®𝑣𝑚 .; */
3: 𝑣𝑚 ′ ← 𝐹 (𝑣𝑚,Φ𝑖 ); /* Train 𝑣𝑚 on the local dataset Φ𝑖 */
4: ®𝑣𝑚 ′ ← 𝐿1(𝑣𝑚 ′, 𝑣𝑚);/* Generate posterior distribution ®𝑣𝑚 ′ for optimization direction */
5: 𝛼 ←𝑀𝑎𝑥{ ®𝑣𝑚 ⊙ ®𝑣𝑚 ′, 0} ⊙ 𝑀𝑎𝑥{ ®𝑣𝑚 ⊙ ®𝑣𝑚 ′}−1;/* Utilize ®𝑣𝑚 ′ and ®𝑣𝑚 to generate an aggregate attention map 𝛼 . */
6: 𝑣 ← 𝛼 ⊙ 𝑣𝑎𝑢𝑥 + (1 − 𝛼) ⊙ 𝑣𝑚 /* Employ 𝛼 to aggregate 𝑣𝑚 and 𝑣𝑎𝑢𝑥 . */

of their model parameters as the center of the merged cluster would be sub-optimal [22, 68]. To mitigate this,
knowledge distillation can avoid direct manipulation of weight parameters. However, conducting the distillation
process typically involves a training phase. If it is done on the client side, it will introduce training latency for
slow devices and increase memory usage. Alternatively, if distillation is performed on the server side, it may
compromise asynchronous efficiency due to concurrent distillation processes.

To this end, as shown in Fig. 6a, we continue to employ a training-free weight aggregation approach, instead
of distillation, but we leverage the prediction of optimization directions for aggregating the cluster center model
parameters to avoid a decline in accuracy. This approach ensures that there are no extra costs on the client side,
and model aggregation on the server side is more efficient. In particular, we present Algorithm 1 to illustrate
the key steps: In contrast to direct average aggregation, we distinguish between the main model, labeled as
𝑣𝑚 , and the auxiliary model, denoted as 𝑣𝑎𝑢𝑥 . Empirically, we designate the model associated with a higher
number of clients within the cluster as the main model 𝑣𝑚 (Line 1). Then we extract valuable knowledge from
𝑣𝑎𝑢𝑥 and incorporate them into 𝑣𝑚 . Here, we treat the parameters of 𝑣𝑎𝑢𝑥 as an optimization target for 𝑣𝑚 and
calculate an optimization direction ®𝑣𝑚 (Line 2). And we refine our optimization direction by incorporating the
posterior distribution. Specifically, to evaluate the effectiveness of using 𝑣𝑎𝑢𝑥 as an optimization target, we first
perform local training on the main model 𝑣𝑚 using the local dataset Φ𝑖 , expressed as 𝑣𝑚 ′ ← 𝐹 (𝑣𝑚,Φ𝑖 )(Line
3). Subsequently, we calculate the weight difference between the model before training (𝑣𝑚) and after training
(𝑣𝑚 ′). This process results in a posterior distribution ®𝑣𝑚 ′ for the optimization direction (Line 4). We leverage
the weight-granularity attention matrix 𝛼 in the refinement process(Line 5). With this matrix, we can carry out
weight-granularity aggregation on both 𝑣𝑚 and 𝑣𝑎𝑢𝑥 , resulting in the merged outcome 𝑣 (Line 6).

4.3.3 Mobile Cluster Expansion. As shown in Fig. 6b, during the expansion process, cluster expansion extends
the client with the wrong cluster into a new cluster. If the client feedback is within the same cluster, it implies
the current cluster would not fit all the mobile clients. In this case, EchoPFL would split the cluster into two. The
server ranks the collected client feedback in ascending order. If the client’s feedback constitutes the last 20%, it
will be assigned to a new cluster 𝑐 . The client 𝛾 assigned to the new cluster is removed from the original cluster 𝑐 ,
while others remain in the original cluster.
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Table 2. Comparison of model dissemination strategies and the communication cost of different FL paradigms.

Approachs When ? To whom ? Comm optimization
FedAvg(Syn FL) Wait for all devices Broadcast to all ×(high cost & peak)
Oort(Syn FL) Wait for all devices Broadcast to all ✓(peak)

FedAsyn(Asyn FL) Every local updates Unicast to a device ×(high cost)
ClusterFL(Syn FL) Wait for all devices broadcast to a cluster ×(high cost & peak)
EchoPFL(Asyn PFL) On-demand after every local updates Adaptive broadcast to a cluster ✓

To rapidly learn the model parameters for the new cluster, we consider the new cluster as the original one with
data drifts. Accordingly, we employ transfer learning that specifically targets domain adaptation to fine-tune the
new cluster’s model parameters upon those of the original cluster (line 3). However, the newly expanded cluster
model obtained via transfer learning often suffers from overfitting issues [37]. This is because a scarcity of data
samples from the new data drifts can lead to overfitting of the cluster center model to a small amount of new
data, thereby reducing model generalization. To tackle this issue, we propose that each mobile client in a newly
expanded cluster conducts local training with partial fine-tuning, focusing on adjusting the final layer output
rather than full training. This partial fine-tuning restriction will only be lifted after the next cluster merging
refinement, allowing the transition to normal full training mode. Technically, we assign a boolean index to label
each client’s local training mode within the newly expanded cluster, indicating whether they should perform
partial fine-tuning or full training.

5 IN-CLUSTER MODEL BROADCAST
After client clustering, the server disseminates the latest models to clients engaged in training the same person-
alized model i.e., within the same cluster, for staleness control. Since client clustering effectively restrains the
broadcast scope and mitigates the data heterogeneity, the core of in-cluster model broadcast is how to determine
the broadcast frequency to further reduce the communication cost without compromising training accuracy.
First, we examine the benefits of model broadcast ( Sec. 5.1) for controlling staleness, aiming to prevent accuracy
deterioration and slower convergence. Subsequently, we introduce our online broadcast frequency prediction
scheme in Sec. 5.2.

5.1 Advantages of In-cluster Model Broadcast
Tab. 2 compares themodel dissemination strategy and the associated communication cost of different FL paradigms.
Existing FL paradigms, either synchronous or asynchronous, exhibit symmetric client-server communication. This
is not aligned with the asymmetric bandwidth in wireless networks, and thus under-utilization of the downstream
bandwidth. In contrast, EchoPFL takes advantage of the abundant downstream bandwidth to distribute the latest
models to clients when necessary, preventing accuracy decline or convergence slowdown when the staleness
problem is significant. We empirically (Sec. 7.2.2) show that the asymmetric server-client communication pattern
in EchoPFL not only results in decreased overall communication cost, but also avoids severe communication
peaks in existing FL paradigms [28, 39, 44, 63].
As a separate note, the staleness problem, as exemplified in [53], always leads to reduced accuracy when

aggregating out-of-date weights from stragglers. This is a common issue because, in practical applications, the
updates from mobile local models inevitably reach the server in different epochs. Similar to [26], we represent
the convergence rate for EchoPFL’s asynchronous PFL by O(

√︁
𝑄𝑚𝑎𝑥𝑄𝑎𝑣𝑔). Where, 𝑄𝑚𝑎𝑥 denotes the maximum

staleness degree of models uploaded across the entire asynchronous PFL process, and 𝑄𝑎𝑣𝑔 signifies the average
of that. Aggregating a few outdated models can significantly increase 𝑄𝑚𝑎𝑥 , posing a bottleneck for convergence
rate optimization. Broadcast can effectively reduce 𝑄𝑚𝑎𝑥 by distributing the cluster center model to clients,
thereby improving the convergence rate.
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5.2 Online In-cluster broadcast Frequency Prediction
Within each cluster, EchoPFL finetunes the broadcast frequency to further balance the communication cost
and model accuracy. Rather than broadcast at fixed intervals or rounds, EchoPFL decides when to broadcast
dynamically.

5.2.1 RNN-based broadcast Frequency Predictor. Our strategy, termedmodel broadcast, distributes the latest model
to clients within the same cluster, proactively controlling model staleness. The broadcast scope is automatically
managed by client clustering algorithms. The broadcast frequency is dynamically set. Specifically, broadcast
decisions are made after each model aggregation, by comparing the accumulated model changes since the last
broadcast and predicted model change following the next model aggregation. Broadcast is invoked when the
predicted model change exceeds the accumulated model changes, i.e., 𝐿1 (𝑣 (𝑡+1) , 𝑣 (𝑡 ) ) > 𝐿1 (𝑣 (𝑡 ) , 𝑣 (𝑡 )𝑚 ), where 𝑣 (𝑡+1) ,
𝑣 (𝑡 ) , and 𝑣 (𝑡 )𝑚 are the predicted aggregated model at time 𝑡 + 1, the aggregated model at time 𝑡 , and the last
broadcast model till time 𝑡 , respectively. The rationale is that model changes between successive aggregations
diminish in convergent training [32, 39]. A substantial model change indicates intolerable model staleness. The
aggregation of such models into the cluster center models has become a bottleneck in minimizing the maximum
staleness 𝑄𝑚𝑎𝑥 , which is known to slow down the convergence rate. Therefore, model broadcasting becomes
necessary. For simplicity, we measure the model changes in L1 distance and adopt a naive recurrent neural
network to predict 𝑣 (𝑡+1) based on historical models after each aggregation.
This method allows us to capture the most recent and substantial updates. 𝐾 is proportional to the current

number of clients within the cluster. To save storage, we keep the change degree (e.g., L1-distance) of these 𝐾
models rather than their model parameters.

We represent the set of these 𝐾 records at each round 𝑡 as K(𝑡). We input these Top-K alterations sequentially
into an RNN model to decide whether to broadcast for a cluster. The input length is the number of clients in the
cluster. The RNN model has two hidden layers, each with 128 units. We use 1,200 historical states to pre-train the
RNN model and the last 𝐾 states for online fine-tuning. The training loss in RNN is:

𝑙𝑜𝑠𝑠 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (P(K(𝑡 − 1)),G(K(𝑡)))

G(K(𝑡)) =
{
1(broadcast), if ℎ(𝑣𝑡−1𝑐 , 𝑣𝑡𝑐 , 𝑣

𝑡−1
𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡

) ≥ 0
0(not broadcast), if ℎ(𝑣𝑡−1𝑐 , 𝑣𝑡𝑐 , 𝑣

𝑡−1
𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡

) < 0

ℎ(𝑣𝑡−1𝑐 , 𝑣𝑡𝑐 , 𝑣
𝑡−1
𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡

) = 𝐿1(𝑣𝑡−1𝑐 , 𝑣𝑡−1
𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡

) − 𝐿1(𝑣𝑡−1𝑐 , 𝑣𝑡𝑐 )

(4)

where P(K(𝑡 − 1)) is the prediction made by the RNN-based predictor on the historical records of 𝐾 alterations
after communication round (𝑡−1). G(K(𝑡)) is the ground truth at 𝑡−𝑡ℎ round, which is obtained by computing the
L1 distance between the weights of the previously broadcasted model 𝑣𝑡−1

𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡
and the newly aggregated model

𝑣𝑡−1𝑐 before 𝑡 −𝑡ℎ round (i.e., the accumulated gap in model staleness), as well as the L1 distance between the newly
aggregated model 𝑣𝑡−1𝑐 and the next iteration’s aggregated model 𝑣𝑡𝑐 (i.e., the eliminated model staleness). This
formulation dynamically balances broadcast frequency and model accuracy. Consequently, EchoPFL broadcasts
more frequently given notable model changes; and less frequently otherwise.

5.2.2 Dynamic Predictor Maintenance. Since EchoPFL dynamically expands and merges clusters, it is crucial to
continuously refine the Top-K records, RNN models, and broadcast strategies for each evolving cluster. EchoPFL
maintains the necessary states for the predictors of each cluster as follows.
• Predictor Maintenance in Cluster Expansion.
– The expanded cluster resets Top-K historical records as the newly expanded client and pads zeros since
existing historical records are inapplicable to the new cluster.

– The expanded cluster inherits the RNN model weights as the initial weights.
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Fig. 7. Continuous integration-based client-server asynchronous coordination mechanism.

– broadcast is deactivated since the cluster center weight is already up-to-date before expansion.
• Predictor Maintenance in Cluster Merging.
– The merged cluster refreshes Top-K records by sampling distinct records from each cluster before merging.
The sampling ratio is set proportional to the variance of the cached 𝐾 L1 distances in each cluster. It
prioritizes the selection of Top-K records with larger weight changes.

– We adopt knowledge distillation to merge the RNN weights of multiple clusters as Sec. 4.3.2.
– The merged cluster model is immediately broadcast to its clients because cluster merging induces drastic
weight changes and thus model staleness.

In summary, the online predictor, coupled with the flexibility to adjust predictors and the value of 𝐾 , empowers
EchoPFL to adapt to heterogeneous and dynamic mobile scenarios.

6 CI-BASED VERSION CONTROL IMPLEMENTATION
In the APFL system, it is common for multiple mobile clients to update the global model simultaneously, or
for new global model updates to be sent during local training, which could lead to version conflicts. We draw
inspiration from the continuous integration (CI) mechanism in Git, to implement FedOM as an easy-to-use
client-server coordination scheme for integration with other FL frameworks. The CI system mechanism offers
specific advantages for APFL’s ubiquitous applications: i) Conflict resolution: The CI mechanism adeptly handles
version conflicts by controlling the aggregation of multiple model updates. ii) Immediate server feedback: Clients
receive prompt feedback about their uploads, mitigating and addressing errors stemming from heterogeneities in
later training stages and enhancing convergence. iii) Fast mobile application release: Mobile clients can promptly
deploy services with newly updated models, minimizing the interval between global model training and its
availability to mobile users. iv) Efficient branch collaboration: CI facilitates efficient collaboration in different
branches, which, in the APFL context, are clusters. We present the following operations, as shown in Fig. 7:

• EchoPFL Pull: Fetch models as desired. Clients periodically query the server for significant model changes
and fetch the latest model from the server to the mobile device for synchronization.
• EchoPFL Push: Upload local updates on-demand. Clients upload their local models to the server, and the
server aggregates the received local models accordingly.
• EchoPFL Branch: Identify personalized clusters. Clustering is essential in personalized FL as it creates
customized and targeted model updates for groups of clients with similar data characteristics. We use
clustering to identify clusters of clients with similarity, and we implement these clusters’ model updates as
branches. We utilize multi-thread and read-write locks to resolve conflicts among personalized branches.
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Fig. 8. Comparison of accuracy vs. training time between EchoPFL and other baselines on diverse tasks.

7 EXPERIMENT

7.1 Experiment Setup

Implementation. We implement EchoPFL using Python 3.7 and PyTorch 1.10 for the server and mobile clients,
respectively. The server is equipped with two RTX 3080 GPUs and 128GB RAM. We use 20 mobile and embedded
devices of five types: Jetson Nano (𝐷1), Jetson NX Xavier (𝐷2), Jetson Nano Orin (𝐷3), Jetson AGX Xavier (𝐷4),
and Raspberry Pi 4 (𝐷5). They represent diverse computing capabilities and form a distributed FL system. For
the implementation of EchoPFL, we set the hyperparameter 𝐶 to 2 in Sec. 4.2.1. For the RNN implementation in
Sec. 5.2.1, We use two hidden layers to construct the RNN model, with each layer consisting of 128 units. We
pre-train the RNN model using 1, 200 historical states, and for online fine-tuning, we utilize the last 𝐾 states. The
𝐾 value is set to 10.
Tasks, Datasets, and Models. We experiment with four real-world mobile applications. And the data assigned
to each client is Non-IID and unbalanced.
• Image Recognition (𝑇1) is ubiquitous in smart cameras/robots. We employed the CIFAR-10 dataset [27].
For Non-IID setting, each device contains 2-class data, and the data within each class can be unbalanced.
The model has two convolutional (conv) layers followed by a fully connected (fc) layer.
• Human Activity Recognition, HAR (𝑇2) on mobiles has gained significant attention [71]. We adopt the
HAR-UCI dataset [1], which comprises sensor data from 30 users. The model contains two fc layers.
• Sound Detection (𝑇3) for hard-of-hearing people using wearables is crucial. We use the Ubisound [49]
dataset, comprising nine sound classes. For Non-IID setting, each device contains 3-class data, and the data
within each class can be unbalanced. The model contains two conv layers followed by two fc layers.
• Automatic Image File Cleaning (𝑇4) helps users mange image files. We collected a dataset of 15000 images
from phones, robots, and dashboard cameras. For Non-IID setting, devices hold unbalanced "Delete/Retain"
data. The model has two conv layers and two fc layers.

Assessing the performance of the FL system can be challenging when dealing with hundreds of physical devices.
Therefore, we divide our experiments into simulation experiments and real-world experiments. For simulation
experiments(𝑇1, 𝑇2 and 𝑇3), we gather data on local training times and communication overhead to simulate the
system using software. In detail, we simulate 20% 𝐷1, 20% 𝐷2, 20% 𝐷3 and 40% 𝐷5. For real-world experiments(𝑇4),
we conducted them with 3𝐷1, 5𝐷2, 4𝐷3,2𝐷4 and 6𝐷5.
Baselines.We adopt six mainstream FL algorithms with mobile devices as performance comparison baselines.
They are configured as follows:
• Synchronous FL: the server waits for all mobile clients for each round. It sets the accuracy baseline
because it has the most comprehensive knowledge from all clients. It also sets a tough communication cost
line due to its infrequent communication frequency.
– FedAvg [39]: The server calculates the average of all mobile clients’ weights. The updated global model
is then broadcast back to all clients.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 41. Publication date: January 2024.



41:14 • Xiaochen Li, Sicong Liu, Zimu Zhou, Bin Guo, Yuan Xu, and Zhiwen Yu

Sync FL
(FedAvg)

Asyn FL
(FedAsyn)

Asyn PFL
(EchoPFL)

0.0

0.5

1.0

C
om

m
un

ic
at

io
n

co
st

s

Upload Download Overall

Fig. 9. EchoPFL vs. other baselines in terms of upload, download, and overall communication cost.

FedAvg: 1.00Oort: 0.98

(a) Download

Oort: 1.00

(b) Upload
Fig. 10. Communication curve in (a) download and (b) upload processes.

– Oort [28] adopts mobile client selection to reduce the waiting time due to system heterogeneity.
• Asynchronous FL: FedAsyn [63] promptly aggregates the model and distributes updates to mobile clients
in an asynchronous manner.
• Semi-asynchronous FL: FedSEA [53] balances model accuracy and training latency through scheduling
synchronization points. It also optimizes the error caused by weight discarding of slow devices.
• Synchronous PFL: ClusterFL [44] trains multiple personalized models by clustering clients based on the
similarity of their model outputs. And it identifies personalized clusters based on their similarities.
• Asynchronous PFL: EchoPFL integrates PFL into the asynchronous framework.
• Standalone: involves individual training on each client, without federated training with other clients.

7.2 Performance Comparison
7.2.1 Model Accuracy vs. Training Latency. We test three typical mobile tasks: image recognition (𝑇1), activity
recognition (𝑇2), and sound detection (𝑇3). In this experiment, we use the simulation environment including 20%
𝐷1, 20% 𝐷2, 20% 𝐷3 and 40% 𝐷5. Fig. 8 shows the results. First, EchoPFL exhibits the best balance between model
accuracy and training time compared to the baselines. Second, EchoPFL outperforms the four non-personalized
baselines in accuracy. It achieves comparable accuracy to ClusterFL, the state-of-the-art PFL method, across all
three tasks. For instance, on Ubisound, EchoPFL demonstrates accuracy improvements of 37.4%, 35.4%, 35.8%,
and 35.6% compared to FedAsyn, FedAvg, Oort, and FedSEA, respectively. Third, EchoPFL consistently yields the
lowest training time across all three tasks. For CIFAR-10, its training was up to 3.7× faster than the baselines. This
efficiency enhancement during convergence is attributed to personalized FL’s capacity to forego convergence
directions irrelevant to diverse personalized models.
Summary. EchoPFL achieved the best overall trade-off between model accuracy and training time. This

makes EchoPFL a promising solution for federated learning in the presence of data and system heterogeneity in
ubiquitous mobile applications.

7.2.2 Communication Cost. We test the communication efficiency of EchoPFL despite its broadcast strategy.
• Overall Communication Cost. We compare EchoPFL’s communication cost with FedAvg, FedAsyn, and
FedSEA in the image recognition (𝑇1) task. The models are deployed on five clients: one 𝐷1, two 𝐷2, and
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Table 3. Communication frequency and training time.
Communication frequency (per minute upload) Training time (min)

Syn FL (FedAvg) 29.22 398
Asyn FL (FedAsyn) 64 102

EchoPFL 61.8 81
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Fig. 11. Comparing EchoPFL with ClusterFL [44] in clustering results among 120 clients, visualized by a boolean matrix of
collaboration relationships.

two 𝐷4. We focus on the sum of upload and download communication costs. As depicted in Fig. 9, we
normalize data by dividing by the maximum value. As a result, EchoPFL achieves a 37% reduction in
overall communication costs compared to FedAvg, a 25% reduction compared to FedSEA, and comparable
communication costs to FedAsyn.
• Upload and Download Communication Cost. To understand why EchoPFL reduces the overall communication
cost, we assess the specific costs associated with upload and download communications. As shown in
Fig. 10 and Tab. 3, EchoPFL reduces training time by 79.6%, significantly decreasing overall communication
cost, even though it results in a 3.12× higher download frequency than FedAvg. Compared to FedAsyn,
EchoPFL exhibits 1.42× more download frequency but achieves a 20.6% lower convergence time. Data
in Fig. 10 is normalized by dividing by the maximum value. This indicates that increasing the download
frequency does not increase the training time; instead, it brings faster convergence.
• Communication Peak.We compared communication peaks between EchoPFL and three baselines over a
monitoring duration of 1 hour. Communication peaks can often result in packet loss and communication
disruptions. As illustrated in Fig. 10, both FedAvg and Oort exhibit frequent communication peaks, mainly
due to their short-term synchronous download strategies. In contrast, EchoPFL maintains relatively stable
upload and download communication costs. Specifically, the upload communication peak in EchoPFL is
1.48 × lower than that of Oort and 2.08 × lower than FedAvg. This difference is attributed to EchoPFL’s
prevention of large-scale simultaneous model distribution, which is a common characteristic of synchronous
methods like FedAvg and Oort (see Fig. 10(a)).

In summary, EchoPFL establishes a bandwidth-friendly solution for mobile FL with several advantages: i) EchoPFL
boasts the lowest overall communication cost compared to FedAvg, FedAsyn, and FedSEA, attributed to its in-
cluster broadcast method, which accelerates convergence and reduces the number of communication rounds. ii)
While EchoPFL experiences higher download costs, it significantly curtails the upload cost, aligning well with
the characteristics of asymmetrical wireless networks. iii) EchoPFL effectively eliminates communication peaks
observed in synchronous FL.

7.2.3 Intermediate Clustering Result. We use the synchronous clustering results of ClusterFL [44] for comparison
because ClusterFL can access all client weights for optimal clustering. We test with task 𝑇1. First, as shown in
Fig. 11, the clusters identified by EchoPFL are similar to those of ClusterFL. Their cosine similarity reaches up to
99% (see Fig. 12(a)), showcasing the efficacy of EchoPFL’s dynamic clustering. Second, we investigate the impact
of the initial cluster number in EchoPFL on the resulting clusters in Fig. 12(a). EchoPFL’s is resilient to different
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Fig. 12. The impact of the initial number of clusters.

Table 4. Experimental data and device heterogeneity settings in four real-world scenarios.

NO. Client 1 Client2 Client3 Client4 Client5
Device Data Device Data Device Data Device Data Device Data

A 𝐷1 10%class 1∼ 10 𝐷1 10%class 1∼ 10 𝐷1 10%class 1∼ 10 𝐷1 10%class 1∼ 10 𝐷1 10%class 1∼ 10
B 𝐷1 25%class1∼ 4 𝐷1 25%class1∼ 4 𝐷1 50%class1∼ 2 𝐷1 50%class1∼ 2 𝐷1 25%class1,75%class 2
C 𝐷1 10%class 1∼ 10 𝐷1 10%class 1∼ 10 𝐷2 10%class 1∼ 10 𝐷2 10%class 1∼ 10 𝐷4 10%class 1∼ 10
D 𝐷1 25%class1∼ 4 𝐷1 25%class1∼ 4 𝐷2 50%class1∼ 2 𝐷2 50%class1∼ 2 𝐷4 25%class1,75%class 2
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initial cluster numbers. Furthermore, as shown in Fig. 12(b), the initial cluster number has a minimal impact
(0.5%) on training time and accuracy.

7.3 Performance in Real-world Mobile Scenarios
We tested EchoPFL and three baseline methods across four real-world mobile scenarios with𝑇1 task. Tab. 4 outlines
the configurations for data and device heterogeneity at each mobile client in the four scenarios, where diverse
subsets of classes are assigned to different devices from 𝐷1 to 𝐷3. In Scenario B, where data heterogeneity is the
focus (Fig. 13b), EchoPFL’s accuracy outperforms both FedAvg and the Standalone baseline due to personalization.
As data heterogeneity increases from client 1 to 5, the accuracy advantage becomes more pronounced, surpassing
ClusterFL at client 5. In Scenario C, which highlights device heterogeneity (Fig. 13c), EchoPFL outperforms the
baselines, mainly on fast devices (Client 3, 4, and 5). It indicates that EchoPFL enables fast devices to release highly
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Table 5. Time and accuracy differences Using L1 distance and KL divergence in real-time cluster partition
Time for each round (s) Trainig time (min) Accuracy (%)

L1-distance
in incremental clustering 0.0011 78.9 90.1

KL divergence
in cluster adjustment 0.105

KL divergence
in incremental clustering 13.2 421.2 90.4
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Fig. 16. Impact of ℎ𝑚 in cluster merging operation.

accurate updated models promptly. In Scenario D, with both device and data heterogeneity (Fig. 13d), EchoPFL
achieves notably higher accuracy than the baselines. It is attributed to EchoPFL’s personalization capability and
its asynchronous mechanism. Furthermore, across all these scenarios, EchoPFL consistently exhibits the shortest
training time, as demonstrated in Fig. 14. The convergence time is normalized by dividing by the maximum value.

7.4 Ablation and Micro-benchmark
This subsection validates EchoPFL’s module and explores different hyperparameter settings. In this experiment,
we use 𝑇1 task with simulation experiment setting(20% 𝐷1, 20% 𝐷2, 20% 𝐷3 and 40% 𝐷5).

7.4.1 w/ 𝑣𝑠. w/o clustering: we assess the necessity and impact of the dynamic client clustering method in
EchoPFL, which is responsible for customizing personalized models. As depicted in Fig. 15, without the dynamic
clustering block, the accuracy is reduced to be similar to FedAvg.

7.4.2 w/ 𝑣𝑠. w/o broadcast. We validate the significance of the in-cluster model broadcast method in EchoPFL.
As shown in Fig. 15, without the broadcast method, the accuracy decreased by 8.09%, and the training time is
prolonged by 1.8×.

7.4.3 Distance measure choice in real-time cluster partition. We validate the choice of distance measures in client
clustering. As shown in Tab. 5, using L1 distance results in decreases up to 5× training time compared to KL
divergence, satisfying the real-time demands. And leveraging KL divergence for the merge step allows EchoPFL
to achieve high final accuracy.

7.4.4 Cluster number hyperparameter in merging. As discussed in Sec. 4.3, the maximized cluster number
hyperparameter plays a crucial role in determining when should trigger the merge operation. This experiment
validates EchoPFL’s robustness to diverse hyperparameters ℎ𝑚× initial cluster number for triggering the merge
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operation. Fig. 16 demonstrates that EchoPFL is robust and insensitive to the value of ℎ𝑚 in convergence time
and accuracy. Thus we set ℎ𝑚 to 2 by default in EchoPFL.

7.5 Real-world Case Study
We adopt 20 mobile and embedded devices(𝐷1, 5𝐷2, 4𝐷3,2𝐷4 and 6𝐷5) to conduct a two-day study with the
automatic image file cleaning applications (𝑇4), as shown in Fig. 17. This app can help users automatically clean
redundant images/videos in the image file library. We employed 20 participants to label each image sample
collected locally from 20 embedded devices as either “Delete” or “Retain” class based on their preferences,
which resulted in Non-IID data distributions across devices. We gather data through random snapshots taken
by autonomous vehicles. This data is divided into 20 segments and labeled by 20 users. The labeled data from
each device is split into testing and training data by 2:8. In addition, to validate the adaptability of EchoPFL, we
directed participants to change their labeling preferences for the "retain/delete" classes twice during the 2-day
study, thereby simulating local data distribution shifts.
Fig. 18 shows an example of client’s data distribution shift on Day 1 (16:00) and Day 2 (7:00). In this two-day

study, the example client’s models dynamically adapted to the changing data distribution during federated learning.
The average local testing accuracy across all Non-IID clients remained stable and consistently exceeded 80%,
affirming EchoPFL’s efficacy in managing diverse data. Furthermore, during the shifts in local data distribution,
the accuracy notably dropped at 16:00 on Day 1 and 7:00 on Day 2. Our approach promptly responded with
adjustments over 2-3 rounds of federated training, allowing the personalized models to adapt to the new data.
Consequently, the local testing accuracy swiftly rebounded to 89.3%. We also showcased the adaptability in
EchoPFL’s clusters in Fig. 19. To visualize, we adopt principal component analysis to reveal how EchoPFL’s
clusters adapt to the changing data distribution of this example client.
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8 RELATED WORK

FL in Ubiquitous Applications. Recently, federated learning (FL) [39] has been widely applied in mobile
scenarios [46]. Researchers deployed FL in various mobile scenarios, including transportation [20, 35, 57],
recommendation systems [42], activity recognition [43, 44] and robotics [36]. For example, Niu et al. [42]
employed FL to enhance the recommendation system within a mobile system operating at a billion-scale. To ease
development across diverse mobile applications, Beutel et al. [2] proposed a system framework called Flower.
Personalized FL. Due to Non-IID and unbalanced client data, personalized FL (PFL) is proposed [54] to output
multiple personalized models instead of a single one. Specifically, PFL contains two main categories: global model
personalization and learning personalized models. The former always involves “FL training + local adaptation”
steps. It mainly contains local fine-tuning [59, 66, 68] and meta-learning [16]. For example, Wang et al. [59]
propose to fine-tune the head layers of the global model to realize personalization. The latter introduces methods
like clustering [4, 17, 44], multi-task learning [50], and model interpolation [19]. Additionally, [23] introduced
dynamic clustering to achieve personalization in the presence of various types of drift. EchoPFL focus on
clustering-based PFL algorithms arises from the high clusterability observed in the data distributions across many
mobile applications [6, 44, 51]. Also, the cluster-based methods for handling device heterogeneity can be applied
to handle these drifts as well.
Synchronous and Asynchronous FL. Device heterogeneity refers to the diversity in computational resources.
It can be addressed by modifying the model architecture and system-level adaptation. The former assigns
lightweight models to devices with lower resources [13, 21, 31, 47, 55]. For example, Li et al. [31] utilize knowledge
distillation to aggregate models. The latter mainly fall into client selection-based methods [28, 30], asynchronous
FL (AFL)[9, 18, 63], and semi-asynchronous FL (SAFL) methods [53, 61]. PyramidFL [30] selects clients with
similar performance to participate in the same training round. [62] present to adjust the broadcasting timing
before or after local training in a synchronous setting, with a fixed broadcast frequency. For SAFL, Sun et
al. [53] propose FedSEA, establishing periodic synchronization points to mitigate the significant impact caused by
stragglers. For AFL, Xie et al. [63] let the server immediately aggregate uploaded weights from each client while
compromising the knowledge aggregation from slow devices. EchoPFL embraces the asynchronous paradigm
for its latency benefits and also addresses its shortcoming in aggregating data from stragglers by employing
on-demand broadcast.

9 CONCLUSION
This paper presents EchoPFL, a client-server coordination mechanism for asynchronous personalized FL (PFL) via
on-demand model broadcast. EchoPFL is the first work that effectively integrates the asynchronous mechanism
into PFL, ensuring the inclusion of all fast or slow mobile clients without sacrificing accuracy. It incrementally
creates and manages clusters based on the incoming model updates and feedback. And it predicts the optimal
broadcast frequency to further reduce the downstream communication cost without compromising accuracy.
Evaluations on four popular mobile tasks and real-world scenarios over twenty mobile devices show that EchoPFL
achieves training time reductions of up to 88.2%, accuracy improvements of up to 41.04%, and communication
cost reduction of up to 37%. EchoPFL enables diverse ubiquitous devices to efficiently participate in the federated
learning process, meeting personalization needs, and providing systematic support for the universal application
of Federated Learning (FL) systems. In future work, we aim to improve EchoPFL’s compatibility with various PFL
algorithms, addressing feature and concept skew. Additionally, we intend to integrate EchoPFL into deep learning
frameworks, facilitating the smooth deployment of asynchronous PFL in real-world ubiquitous applications.
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